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Develop a visionary, next generation, open source
computer algebra system, integrating all systems, libraries
and packages developed within the TRR.
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Update on progress

I Antic number theory software - Bill Hart

I Singular.jl - integrating Singular and Julia - Bill Hart
I Gap/Julia integration - Sebastian Gutsche
I Garbage collection - Reimer Behrends
I Julia in Gap and the future - Thomas Breuer
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Introducing the OSCAR developers

I Bill Hart - TU Kaiserslautern
I Flint - polynomials and linear algebra over concrete rings
I Nemo.jl - Finitely presented rings in Julia
I Singular.jl - Julia/Singular integration

I Sebastian Gutsche - Siegen University
I JuliaInterface/GAP.jl - Julia/GAP integration
I Julia/polymake integration
I CAP: Categorical programming

I Reimer Behrends - TU Kaiserslautern
I Parallelisation
I Low-level infrastructure

I Thomas Breuer - RWTH Aachen
I Julia in Gap
I Representation theory
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Others involved in OSCAR

I Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana

I Singular: Hans Schoenemann, Janko Boehm, others
I PI’s: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank

Lübeck, Michael Joswig
I ... You !!??

We are looking for projects that:

I Can be broken down into fundamentals
I Pieces are represented in the four cornerstone systems
I Relevant to the TRR
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Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra

I Antic - number field arith.
I MPIR (fork of GMP) - bignum arithmetic

Julia libraries:

I Nemo.jl - generic, finitely presented rings
I Hecke.jl - number fields, class field theory, algebraic number

theory
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New features in Flint

I Quadratic sieve integer factorisation

I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation

I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test

I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT

I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form

I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial

I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]

I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x ]
I Multivariate polynomial arithmetic Z[x , y , z , . . .]

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



Integer factorisation : Quadratic sieve

Table: Quadratic sieve timings

Digits Pari/GP Flint (1 core) Flint (4 cores)

50 0.43 0.55 0.39
59 3.8 3.0 1.7
68 38 21 14
77 257 140 52
83 2200 1500 540
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APRCL primality test timings
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FFT: Integer and polynomial multiplication

Table: FFT timings

Words 1 core 4 cores 8 cores

110k 0.07s 0.05s 0.05s
360k 0.3s 0.1 0.1s
1.3m 1.1s 0.4s 0.3s
4.6m 4.5s 1.5s 1.0s
26m 28s 9s 6s
120m 140s 48s 33s
500m 800s 240s 150s
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Characteristic and minimal polynomial

Table: Charpoly and minpoly timings

Op Sage 6.9 Pari 2.7.4 Magma 2.21-4 Giac 1.2.2 Flint

Charpoly 0.2s 0.6s 0.06s 0.06s 0.04s
Minpoly 0.07s >160 hrs 0.05s 0.06s 0.04s

for 80× 80 matrix over Z with entries in [−20, 20] and minpoly of
degree 40.
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Multivariate multiplication

Table: “Dense” Fateman multiply bench

n Sage Singular Magma Giac Piranha Trip Flint

5 0.0063s 0.0048s 0.0018s 0.00023s 0.0011s 0.00057s 0.00023s
10 0.51s 0.11s 0.12s 0.0056s 0.029s 0.023s 0.0043s
15 9.1s 1.4s 1.9s 0.11s 0.39s 0.21s 0.045s
20 75s 21s 16s 0.62s 2.9s 2.3s 0.48s
25 474s 156s 98s 2.8s 14s 12s 2.3s
30 1667s 561s 440s 14s 56s 41s 10s

4 variables
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Multivariate multiplication

Table: Sparse multiply benchmark

n Sage Singular Magma Giac Piranha Trip Flint

4 0.0066s 0.0050s 0.0062s 0.0046s 0.0033s 0.0015s 0.0014s
6 0.15s 0.11s 0.080s 0.030s 0.025s 0.016s 0.016s
8 1.6s 0.79s 0.68s 0.28s 0.15s 0.10s 0.10s
10 8s 3.6s 3.0s 1.5s 0.62s 0.40s 0.48s
12 43s 14s 11s 4.8s 2.2s 2.2s 2.0s
14 173s 63s 37s 14s 6.7s 12s 7.2s
16 605s 201s 94s 39s 20s 39s 19s

5 variables
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Efficient generics
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Efficient generics
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I JIT compilation : near C performance.
I Designed by mathematically minded people.
I Open Source (MIT License).
I Actively developed since 2009.
I Supports Windows, OSX, Linux, BSD.
I Friendly C/Python-like (imperative) syntax.
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Interfaces to C libraries:
I Flint : univariate polys and matrices over Z, Q, Z/pZ, Fq, Qp

I Arb : ball arithmetic, univariate polys and matrices over R and
C, special and transcendental functions

I Antic : element arithmetic over abs. number fields

Nemo capabilities:
I Generic rings: residue rings, fraction fields, dense univariate

polynomials, sparse distributed multivariate polynomials, dense
linear algebra, power series, permutation groups

Highlights:
Generic polynomial resultant, charpoly, minpoly over an integrally
closed domain, Smith and Hermite normal form, Popov form, fast
generic determinant, fast sparse multivariate arithmetic
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Singular.jl

Access to Singular kernel functions and data types:

I Coefficient rings Z, Q, Z/nZ, GF(p), etc.

I Polynomials, ideals, modules, matrices, etc.
I Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

I Singular polynomials over any Nemo coefficient ring, e.g.
Groebner bases over cyclotomic fields

I Nemo generics over any Singular ring
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JuliaInterface

GAP package JuliaInterface

GAP Julia

JuliaInterface provides

I Conversions of GAP to Julia data and vice versa
I Data structures for Julia objects and functions in GAP
I Possibility to add compiled Julia functions as kernel functions

to GAP
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JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>

gap> JuliaUnbox( b );
2

Possible conversions:

I Integers
I Floats
I Permutations
I Finite field elements
I Nested lists of the above to Arrays
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JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>

gap> jl_sqrt( 4 );
2.

I Julia functions can be used like GAP functions
I Input data is converted to Julia, return value is converted back

to GAP
I Calling only possible for convertible types
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JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

function orbit( self, element, generators, action )
work_set = [ element ]
return_set = [ element ]
generator_length = gap_LengthPlist(generators)
while length(work_set) != 0

current_element = pop!(work_set)
for current_generator_number = 1:generator_length

current_generator = gap_ListElement(generators,
current_generator_number)

current_result = gap_CallFunc2Args(action,current_element,
current_generator)

is_in_set = false
for i in return_set

if i == current_result
is_in_set = true
break

end
end
if ! is_in_set

push!( work_set, current_result )
push!( return_set, current_result )

end
end

end
return return_set

end

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

function orbit( self, element, generators, action )
work_set = [ element ]
return_set = [ element ]
generator_length = gap_LengthPlist(generators)
while length(work_set) != 0

current_element = pop!(work_set)
for current_generator_number = 1:generator_length

current_generator = gap_ListElement(generators,
current_generator_number)

current_result = gap_CallFunc2Args(action,current_element,
current_generator)

is_in_set = false
for i in return_set

if i == current_result
is_in_set = true
break

end
end
if ! is_in_set

push!( work_set, current_result )
push!( return_set, current_result )

end
end

end
return return_set

end

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46
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JuliaInterface: Next steps

Next development steps in JuliaInterface include

I stabilization of Syntax for GAP calls in Julia
I providing sufficient amount of integration of GAP data types

on the Julia side
I unifying GAP and Julia memory management
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Coordinating garbage collection for GAP and Julia

I Both GAP and Julia use garbage collection for memory
management.

I Garbage collection: At intervals, find out which objects aren’t
in use anymore and throw them away.

I Problem: GAP and Julia have two distinct, incompatible
implementations of garbage collection.

I Without additional work, objects may be freed prematurely,
leading to memory corruption.
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How does garbage collection work?

I Garbage collection is (in principle) a simple graph algorithm.

I Find every object reachable from a root.
I Dispose of objects that could not be reached.
I Roots are:

I Global variables (static memory).
I Local variables and temporary values (stack, registers).
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Example
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GAP & Julia

I Problem: Two distinct reachability relations.

I GAP’s GC does not know the structure of Julia objects and
thus which GAP objects may be reachable from Julia objects
or Julia roots.

I Julia’s GC does not know the structure of GAP objects and
thus which Julia objects may be reachable from GAP objects
or GAP roots.

I Result: GAP or Julia objects may be freed prematurely.
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Solution A: Mutual recognition

I GAP tells Julia about any reference from a GAP to a Julia
object it has. Julia stores those in a multiset.

I Julia tells GAP about any reference from a Julia to a GAP
object it has. GAP stores those in a multiset.

I Both GAP and Julia use those multisets as additional roots for
their reachability algorithms.
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Advantages and disadvantages

Pros:

I Relatively straightforward to implement.
I Either GC does not need to know how the other works.
I Keeps working when GC implementations change.

Cons:

I Avoidable inefficiencies (multiset implementation).
I Unreachable cycles that involve both GAP and Julia objects

will not be reclaimed (potential memory leak).
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Solution B: One GC to rule them all

I Idea: use the same GC for both GAP and Julia.

I It is not possible to use Julia with the GAP GC, but:
I It is possible to use Julia’s GC for GAP (with some

modifications).
I GAP supports almost everything the Julia GC requires.
I Exception: root scanning.

I Julia’s GC determines local variable roots precisely.
I GAP’s GC assumes conservative scanning for local variables.
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Conservative stack scanning

I Scan the entire stack and CPU registers word by word.

I Anything that may be a pointer to an object is treated like one.
I Overly conservative in keeping objects alive.
I GAP needs conservative scanning, but Julia doesn’t support it.
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Retrofit conservative stack scanning to Julia

I Need to derive whether a machine word represents an address
pointing to an object:

1. Can mostly be derived from Julia’s data structures
2. For some cases this needs to be tracked in a separate data

structure
I We have a proof-of-concept implementation.
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Advantages and disadvantages

Pros:

I Avoids the inefficiencies of solution A.
I Handles cycles properly and avoids memory leaks.

Cons:

I Requires modified versions of GAP and Julia.
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Goal

I Neither approach is perfect.

I Pursue solutions A and B in parallel.
I Solution A is minimally invasive and is already used in

JuliaInterface.
I We have a partial prototype for solution B.
I Next step: Production-ready version of solution B as a

minimal patch for Julia/GAP.
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Integration of GAP and Julia – Ideas and Experiments

From GAP’s point of view, Julia can provide

I new functionality
I speedup via reimplementing pieces of GAP code in Julia
I eventually an alternative to parts of GAP?
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How to speed up GAP code?

Classical recommendation:

I Identify the (small) time critical parts of the code.
I Rewrite them in C. (“Move them into the GAP kernel”.)

Problem: 95% of mathematicians are not C programmers!

Now:

I Identify the time critical parts of the code.
I Rewrite them in Julia.

Hope to get code that is both
as fast as C code
and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



How to speed up GAP code?

Classical recommendation:

I Identify the (small) time critical parts of the code.
I Rewrite them in C. (“Move them into the GAP kernel”.)

Problem: 95% of mathematicians are not C programmers!

Now:

I Identify the time critical parts of the code.
I Rewrite them in Julia.

Hope to get code that is both
as fast as C code
and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



How to speed up GAP code?

Classical recommendation:

I Identify the (small) time critical parts of the code.
I Rewrite them in C. (“Move them into the GAP kernel”.)

Problem: 95% of mathematicians are not C programmers!

Now:

I Identify the time critical parts of the code.
I Rewrite them in Julia.

Hope to get code that is both
as fast as C code
and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



How to speed up GAP code?

Classical recommendation:

I Identify the (small) time critical parts of the code.
I Rewrite them in C. (“Move them into the GAP kernel”.)

Problem: 95% of mathematicians are not C programmers!

Now:

I Identify the time critical parts of the code.
I Rewrite them in Julia.

Hope to get code that is both
as fast as C code
and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



How to speed up GAP code?

Classical recommendation:

I Identify the (small) time critical parts of the code.
I Rewrite them in C. (“Move them into the GAP kernel”.)

Problem: 95% of mathematicians are not C programmers!

Now:

I Identify the time critical parts of the code.
I Rewrite them in Julia.

Hope to get code that is both
as fast as C code
and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system



Which parts of GAP are suitable for this approach?

“Low level”:

few calls to GAP functions,

long nested loops over simple objects

(why not also GAP’s C code?)
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Which parts of GAP are suitable for this approach?

I functions for handling permutations
C code in GAP

I lattice functions
LLL, OrthogonalEmbeddings

I coset enumeration functions
tables of small integers

I character theory
arithmetics with vectors of (algebraic) integers

I your suggestions?
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