OSCAR: A visionary, new computer algebra system

William Hart, Sebastian Gutsche Reimer Behrends, Thomas Breuer

September 27, 2017

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

Develop a visionary, next generation, open source computer algebra system, integrating all systems, libraries and packages developed within the TRR. GAP: computational discrete algebra, group and representation theory, general purpose high level interpreted programming language. Singular: polynomial computations, with emphasis on algebraic geometry, commutative algebra, and singularity theory.

eijnl

Examples:

julia

- Multigraded equivariant Cox ring of a toric variety over a number field
- Graphs of groups in division algebras
- Matrix groups over polynomial rings
 over number field

Oscar

polymake: convex polytopes, polyhedral and stacky fans, simplicial complexes and related objects from combinatorics and geometry.

julia

juliå

ANTIC: number theoretic software featuring computations in and with number fields and generic finitely presented rings.

Antic number theory software - Bill Hart

- Antic number theory software Bill Hart
- Singular.jl integrating Singular and Julia Bill Hart

- Antic number theory software Bill Hart
- Singular.jl integrating Singular and Julia Bill Hart
- Gap/Julia integration Sebastian Gutsche

- Antic number theory software Bill Hart
- Singular.jl integrating Singular and Julia Bill Hart
- Gap/Julia integration Sebastian Gutsche
- Garbage collection Reimer Behrends

- Antic number theory software Bill Hart
- Singular.jl integrating Singular and Julia Bill Hart
- Gap/Julia integration Sebastian Gutsche
- Garbage collection Reimer Behrends
- Julia in Gap and the future Thomas Breuer

- Antic number theory software Bill Hart
- Singular.jl integrating Singular and Julia Bill Hart
- Gap/Julia integration Sebastian Gutsche
- Garbage collection Reimer Behrends
- Julia in Gap and the future Thomas Breuer

- Bill Hart TU Kaiserslautern
 - Flint polynomials and linear algebra over concrete rings
 - Nemo.jl Finitely presented rings in Julia
 - Singular.jl Julia/Singular integration

- Bill Hart TU Kaiserslautern
 - Flint polynomials and linear algebra over concrete rings
 - Nemo.jl Finitely presented rings in Julia
 - Singular.jl Julia/Singular integration
- Sebastian Gutsche Siegen University
 - JuliaInterface/GAP.jl Julia/GAP integration
 - Julia/polymake integration
 - CAP: Categorical programming

- Bill Hart TU Kaiserslautern
 - Flint polynomials and linear algebra over concrete rings
 - Nemo.jl Finitely presented rings in Julia
 - Singular.jl Julia/Singular integration
- Sebastian Gutsche Siegen University
 - JuliaInterface/GAP.jl Julia/GAP integration
 - Julia/polymake integration
 - CAP: Categorical programming
- Reimer Behrends TU Kaiserslautern
 - Parallelisation
 - Low-level infrastructure

- Bill Hart TU Kaiserslautern
 - Flint polynomials and linear algebra over concrete rings
 - Nemo.jl Finitely presented rings in Julia
 - Singular.jl Julia/Singular integration
- Sebastian Gutsche Siegen University
 - JuliaInterface/GAP.jl Julia/GAP integration
 - Julia/polymake integration
 - CAP: Categorical programming
- Reimer Behrends TU Kaiserslautern
 - Parallelisation
 - Low-level infrastructure
- Thomas Breuer RWTH Aachen
 - Julia in Gap
 - Representation theory

► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others
- PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others
- PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- ... You !!??

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others
- PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- ▶ ... You !!??

We are looking for projects that:

Can be broken down into fundamentals

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others
- PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- ▶ ... You !!??

We are looking for projects that:

- Can be broken down into fundamentals
- Pieces are represented in the four cornerstone systems

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- Singular: Hans Schoenemann, Janko Boehm, others
- PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- ... You !!??

We are looking for projects that:

- Can be broken down into fundamentals
- Pieces are represented in the four cornerstone systems
- Relevant to the TRR

Flint - polynomials and linear algebra

- Flint polynomials and linear algebra
- Antic number field arith.

- Flint polynomials and linear algebra
- Antic number field arith.
- MPIR (fork of GMP) bignum arithmetic

- Flint polynomials and linear algebra
- Antic number field arith.
- MPIR (fork of GMP) bignum arithmetic

Julia libraries:

Nemo.jl - generic, finitely presented rings

- Flint polynomials and linear algebra
- Antic number field arith.
- MPIR (fork of GMP) bignum arithmetic

Julia libraries:

- Nemo.jl generic, finitely presented rings
- Hecke.jl number fields, class field theory, algebraic number theory

Quadratic sieve integer factorisation

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial
- van Hoeij factorisation for $\mathbb{Z}[x]$

- Quadratic sieve integer factorisation
- Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial
- van Hoeij factorisation for $\mathbb{Z}[x]$
- Multivariate polynomial arithmetic $\mathbb{Z}[x, y, z, ...]$

Table: Quadratic sieve timings

Digits	Pari/GP	Flint (1 core)	Flint (4 cores)
50	0.43	0.55	0.39
59	3.8	3.0	1.7
68	38	21	14
77	257	140	52
83	2200	1500	540

APRCL primality test timings

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

Table: FFT timings

Words	1 core	4 cores	8 cores
110k	0.07s	0.05s	0.05s
360k	0.3s	0.1	0.1s
1.3m	1.1s	0.4s	0.3s
4.6m	4.5s	1.5s	1.0s
26m	28s	9s	6s
120m	140s	48s	33s
500m	800s	240s	150s
Table: Charpoly and minpoly timings

Ор	Sage 6.9	Pari 2.7.4	Magma 2.21-4	Giac 1.2.2	Flint
Charpoly	0.2s	0.6s	0.06s	0.06s	0.04s
Minpoly	0.07s	>160 hrs	0.05s	0.06s	0.04s

for 80 \times 80 matrix over $\mathbb Z$ with entries in [-20,20] and minpoly of degree 40.

Table: "Dense" Fateman multiply bench

n	Sage	Singular	Magma	Giac	Piranha	Trip	Flint
5	0.0063s	0.0048s	0.0018s	0.00023s	0.0011s	0.00057s	0.00023s
10	0.51s	0.11s	0.12s	0.0056s	0.029s	0.023s	0.0043s
15	9.1s	1.4s	1.9s	0.11s	0.39s	0.21s	0.045s
20	75s	21s	16s	0.62s	2.9s	2.3s	0.48s
25	474s	156s	98s	2.8s	14s	12s	2.3s
30	1667s	561s	440s	14s	56s	41s	10s

4 variables

Table: Sparse multiply benchmark

n	Sage	Singular	Magma	Giac	Piranha	Trip	Flint
4	0.0066s	0.0050s	0.0062s	0.0046s	0.0033s	0.0015s	0.0014s
6	0.15s	0.11s	0.080s	0.030s	0.025s	0.016s	0.016s
8	1.6s	0.79s	0.68s	0.28s	0.15s	0.10s	0.10s
10	8s	3.6s	3.0s	1.5s	0.62s	0.40s	0.48s
12	43s	14s	11s	4.8s	2.2s	2.2s	2.0s
14	173s	63s	37s	14s	6.7s	12s	7.2s
16	605s	201s	94s	39s	20s	39s	19s

5 variables

Fast generics

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

- ► JIT compilation : near C performance.
- Designed by mathematically minded people.
- Open Source (MIT License).
- Actively developed since 2009.
- Supports Windows, OSX, Linux, BSD.
- Friendly C/Python-like (imperative) syntax.

▶ Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p

- ▶ Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- ► Arb : ball arithmetic, univariate polys and matrices over ℝ and ℂ, special and transcendental functions

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- ► Arb : ball arithmetic, univariate polys and matrices over ℝ and C, special and transcendental functions
- > Antic : element arithmetic over abs. number fields

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- ► Arb : ball arithmetic, univariate polys and matrices over ℝ and C, special and transcendental functions
- Antic : element arithmetic over abs. number fields

Nemo capabilities:

 Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- ► Arb : ball arithmetic, univariate polys and matrices over ℝ and C, special and transcendental functions
- Antic : element arithmetic over abs. number fields

Nemo capabilities:

 Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials, dense linear algebra, power series, permutation groups

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- ► Arb : ball arithmetic, univariate polys and matrices over ℝ and C, special and transcendental functions
- Antic : element arithmetic over abs. number fields

Nemo capabilities:

 Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials, dense linear algebra, power series, permutation groups

Highlights:

Generic polynomial resultant, charpoly, minpoly over an integrally closed domain, Smith and Hermite normal form, Popov form, fast generic determinant, fast sparse multivariate arithmetic

• Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.
- > Polynomials, ideals, modules, matrices, etc.

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.
- Polynomials, ideals, modules, matrices, etc.
- Groebner basis, resolutions, syzygies

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.
- Polynomials, ideals, modules, matrices, etc.
- Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

 Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.
- Polynomials, ideals, modules, matrices, etc.
- Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

- Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields
- Nemo generics over any Singular ring

 $\mathsf{GAP} \longleftrightarrow \mathsf{Julia}$

 $\mathsf{GAP} \longleftrightarrow \mathsf{Julia}$

JuliaInterface provides

 $\mathsf{GAP} \longleftrightarrow \mathsf{Julia}$

JuliaInterface provides

Conversions of GAP to Julia data and vice versa

 $\mathsf{GAP} \longleftrightarrow \mathsf{Julia}$

JuliaInterface provides

- Conversions of GAP to Julia data and vice versa
- Data structures for Julia objects and functions in GAP

 $\mathsf{GAP} \longleftrightarrow \mathsf{Julia}$

JuliaInterface provides

- Conversions of GAP to Julia data and vice versa
- Data structures for Julia objects and functions in GAP
- Possibility to add compiled Julia functions as kernel functions to GAP

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
```

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
2
```

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
```

Possible conversions:

Integers

2

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
2
```

Possible conversions:

- Integers
- Floats

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
2
```

Possible conversions:

- Integers
- Floats
- Permutations

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
```

Possible conversions:

- Integers
- Floats

2

- Permutations
- Finite field elements

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>
gap> JuliaUnbox( b );
```

Possible conversions:

- Integers
- Floats

2

- Permutations
- Finite field elements
- Nested lists of the above to Arrays

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt( 4 );
2.
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt( 4 );
2.
```

Julia functions can be used like GAP functions
JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt( 4 );
2.
```

- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP

JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt( 4 );
2.
```

- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP
- Calling only possible for convertible types

JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt( 4 );
2.
```

- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP
- Calling only possible for convertible types

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
function orbit( self, element, generators, action )
 work set = [ element ]
 return_set = [ element ]
 generator length = gap LengthPlist(generators)
 while length(work set) != 0
    current_element = pop!(work_set)
   for current_generator_number = 1:generator_length
      current generator = gap ListElement(generators.
                                           current_generator_number)
      current_result = gap_CallFunc2Args(action,current_element,
                                         current generator)
      is in set = false
      for i in return_set
       if i == current result
          is in set = true
          break
        end
      end
      if ! is_in_set
       push!( work_set, current_result )
        push! ( return set, current result )
      end
    end
  end
 return return set
end
```

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Compiled Julia functions come close to the performance of kernel functions:

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Compiled Julia functions come close to the performance of kernel functions:

gap> S := GeneratorsOfGroup(SymmetricGroup(10000));;

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Compiled Julia functions come close to the performance of kernel functions:

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
```

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Compiled Julia functions come close to the performance of kernel functions:

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
```

5769

```
gap> orbit_jl( 1, S, OnPoints );; time;
84
```

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

Compiled Julia functions come close to the performance of kernel functions:

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
```

```
gap> orbit( 1, S, OnPoints );; time;
5769
```

```
gap> orbit_jl( 1, S, OnPoints );; time;
84
```

```
gap> orbit_c( 1, S, OnPoints );; time;
46
```

stabilization of Syntax for GAP calls in Julia

- stabilization of Syntax for GAP calls in Julia
- providing sufficient amount of integration of GAP data types on the Julia side

- stabilization of Syntax for GAP calls in Julia
- providing sufficient amount of integration of GAP data types on the Julia side
- unifying GAP and Julia memory management

 Both GAP and Julia use garbage collection for memory management.

- Both GAP and Julia use garbage collection for memory management.
- Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.

- Both GAP and Julia use garbage collection for memory management.
- Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.
- Problem: GAP and Julia have two distinct, incompatible implementations of garbage collection.

- Both GAP and Julia use garbage collection for memory management.
- Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.
- Problem: GAP and Julia have two distinct, incompatible implementations of garbage collection.
- Without additional work, objects may be freed prematurely, leading to memory corruption.

• Garbage collection is (in principle) a simple graph algorithm.

- Garbage collection is (in principle) a simple graph algorithm.
- Find every object reachable from a root.

- Garbage collection is (in principle) a simple graph algorithm.
- Find every object reachable from a root.
- Dispose of objects that could not be reached.

- Garbage collection is (in principle) a simple graph algorithm.
- Find every object reachable from a root.
- Dispose of objects that could not be reached.
- Roots are:
 - Global variables (static memory).
 - Local variables and temporary values (stack, registers).

Example

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

Problem: Two distinct reachability relations.

- Problem: Two distinct reachability relations.
- GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.

- Problem: Two distinct reachability relations.
- GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.
- Julia's GC does not know the structure of GAP objects and thus which Julia objects may be reachable from GAP objects or GAP roots.

- Problem: Two distinct reachability relations.
- GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.
- Julia's GC does not know the structure of GAP objects and thus which Julia objects may be reachable from GAP objects or GAP roots.
- ▶ Result: GAP or Julia objects may be freed prematurely.

Example

Behrends, Breuer, Gutsche, Hart OSCAR: A visionary, new computer algebra system

 GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.

- GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.

- GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.
- Both GAP and Julia use those multisets as additional roots for their reachability algorithms.

- GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.
- Both GAP and Julia use those multisets as additional roots for their reachability algorithms.

Pros:

- Relatively straightforward to implement.
- Either GC does not need to know how the other works.
- Keeps working when GC implementations change.

Pros:

- Relatively straightforward to implement.
- Either GC does not need to know how the other works.
- Keeps working when GC implementations change.

Cons:

- Avoidable inefficiencies (multiset implementation).
- Unreachable cycles that involve both GAP and Julia objects will not be reclaimed (potential memory leak).
► Idea: use the same GC for both GAP and Julia.

- ► Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- It is possible to use Julia's GC for GAP (with some modifications).

- ► Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- It is possible to use Julia's GC for GAP (with some modifications).
- ► GAP supports *almost* everything the Julia GC requires.

- ► Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- It is possible to use Julia's GC for GAP (with some modifications).
- ► GAP supports *almost* everything the Julia GC requires.
- Exception: root scanning.
 - > Julia's GC determines local variable roots *precisely*.
 - GAP's GC assumes *conservative* scanning for local variables.

Scan the entire stack and CPU registers word by word.

- Scan the entire stack and CPU registers word by word.
- Anything that *may* be a pointer to an object is treated like one.

- Scan the entire stack and CPU registers word by word.
- Anything that *may* be a pointer to an object is treated like one.
- Overly conservative in keeping objects alive.

- Scan the entire stack and CPU registers word by word.
- Anything that *may* be a pointer to an object is treated like one.
- Overly conservative in keeping objects alive.
- ► GAP needs conservative scanning, but Julia doesn't support it.

Need to derive whether a machine word represents an address pointing to an object:

- Need to derive whether a machine word represents an address pointing to an object:
 - 1. Can mostly be derived from Julia's data structures
 - 2. For some cases this needs to be tracked in a separate data structure
- We have a proof-of-concept implementation.

Pros:

- Avoids the inefficiencies of solution A.
- Handles cycles properly and avoids memory leaks.

Pros:

- Avoids the inefficiencies of solution A.
- ► Handles cycles properly and avoids memory leaks.

Cons:

• Requires modified versions of GAP and Julia.

► Neither approach is perfect.

- ► Neither approach is perfect.
- Pursue solutions A and B in parallel.

- Neither approach is perfect.
- Pursue solutions A and B in parallel.
- Solution A is minimally invasive and is already used in JuliaInterface.

- Neither approach is perfect.
- Pursue solutions A and B in parallel.
- Solution A is minimally invasive and is already used in JuliaInterface.
- We have a partial prototype for solution B.

- Neither approach is perfect.
- Pursue solutions A and B in parallel.
- Solution A is minimally invasive and is already used in JuliaInterface.
- We have a partial prototype for solution B.
- Next step: Production-ready version of solution B as a minimal patch for Julia/GAP.

From GAP's point of view, Julia can provide

- new functionality
- speedup via reimplementing pieces of GAP code in Julia
- eventually an alternative to parts of GAP?

Classical recommendation:

- Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Classical recommendation:

- ► Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Classical recommendation:

- Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- Identify the time critical parts of the code.
- Rewrite them in Julia.

Classical recommendation:

- ► Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- Identify the time critical parts of the code.
- Rewrite them in Julia.

Hope to get code that is both as fast as C code and as flexible as GAP code.

Classical recommendation:

- ► Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- Identify the time critical parts of the code.
- Rewrite them in Julia.

Hope to get code that is both as fast as C code and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

"Low level":

few calls to GAP functions, long nested loops over simple objects

(why not also GAP's C code?)

functions for handling permutations
 C code in GAP

- functions for handling permutations
 C code in GAP
- lattice functions
 LLL, OrthogonalEmbeddings

- functions for handling permutations
 C code in GAP
- lattice functions
 LLL, OrthogonalEmbeddings
- coset enumeration functions tables of small integers

- functions for handling permutations
 C code in GAP
- lattice functions
 LLL, OrthogonalEmbeddings
- coset enumeration functions tables of small integers
- character theory arithmetics with vectors of (algebraic) integers

- functions for handling permutations
 C code in GAP
- lattice functions
 LLL, OrthogonalEmbeddings
- coset enumeration functions tables of small integers
- character theory arithmetics with vectors of (algebraic) integers
- your suggestions?