OSCAR: A visionary, new computer algebra system

William Hart, Sebastian Gutsche Reimer Behrends, Thomas Breuer

September 27, 2017

Behrends, Breuer, Gutsche, Hart [OSCAR: A visionary, new computer algebra system](#page-136-0)

Develop a visionary, next generation, open source computer algebra system, integrating all systems, libraries and packages developed within the TRR.

GAP: computational discrete algebra, group and representation theory, general purpose high level interpreted programming language. Singular: polynomial computations, with emphasis on algebraic geometry, commutative algebra, and singularity theory.

giluj

Examples:

juià

- Multigraded equivariant COX ring of a toric variety over a number field
- Graphs of groups in division algebras
- Matrix groups over polynomial rings over number field

Oscar

polymake: convex polytopes, polyhedral and stacky fans, simplicial complexes and related objects from combinatorics and geometry.

julia

ANTIC: number theoretic software featuring computations in and with number fields and generic finitely presented rings.

Antic number theory software - Bill Hart

- Antic number theory software Bill Hart
- \triangleright Singular.jl integrating Singular and Julia Bill Hart
- Antic number theory software Bill Hart
- \triangleright Singular.jl integrating Singular and Julia Bill Hart
- \triangleright Gap/Julia integration Sebastian Gutsche
- Antic number theory software Bill Hart
- \triangleright Singular.jl integrating Singular and Julia Bill Hart
- \triangleright Gap/Julia integration Sebastian Gutsche
- ▶ Garbage collection Reimer Behrends
- \triangleright Antic number theory software Bill Hart
- \triangleright Singular.jl integrating Singular and Julia Bill Hart
- ▶ Gap/Julia integration Sebastian Gutsche
- **In Garbage collection Reimer Behrends**
- \blacktriangleright Julia in Gap and the future Thomas Breuer
- \triangleright Antic number theory software Bill Hart
- \triangleright Singular.jl integrating Singular and Julia Bill Hart
- ▶ Gap/Julia integration Sebastian Gutsche
- **In Garbage collection Reimer Behrends**
- \blacktriangleright Julia in Gap and the future Thomas Breuer

- \triangleright Bill Hart TU Kaiserslautern
	- \triangleright Flint polynomials and linear algebra over concrete rings
	- \triangleright Nemo.jl Finitely presented rings in Julia
	- \triangleright Singular.jl Julia/Singular integration

- ▶ Bill Hart TU Kaiserslautern
	- \triangleright Flint polynomials and linear algebra over concrete rings
	- \triangleright Nemo.jl Finitely presented rings in Julia
	- \triangleright Singular.jl Julia/Singular integration
- \triangleright Sebastian Gutsche Siegen University
	- \triangleright JuliaInterface/GAP.jl Julia/GAP integration
	- \blacktriangleright Julia/polymake integration
	- \triangleright CAP: Categorical programming

- \triangleright Bill Hart TU Kaiserslautern
	- \triangleright Flint polynomials and linear algebra over concrete rings
	- \triangleright Nemo.jl Finitely presented rings in Julia
	- \triangleright Singular.jl Julia/Singular integration
- ▶ Sebastian Gutsche Siegen University
	- \triangleright JuliaInterface/GAP.jl Julia/GAP integration
	- \blacktriangleright Julia/polymake integration
	- \triangleright CAP: Categorical programming
- ^I Reimer Behrends TU Kaiserslautern
	- \blacktriangleright Parallelisation
	- \blacktriangleright Low-level infrastructure

- \triangleright Bill Hart TU Kaiserslautern
	- \triangleright Flint polynomials and linear algebra over concrete rings
	- \triangleright Nemo.jl Finitely presented rings in Julia
	- \triangleright Singular.jl Julia/Singular integration
- ▶ Sebastian Gutsche Siegen University
	- \triangleright JuliaInterface/GAP.jl Julia/GAP integration
	- \blacktriangleright Julia/polymake integration
	- \triangleright CAP: Categorical programming
- ^I Reimer Behrends TU Kaiserslautern
	- \blacktriangleright Parallelisation
	- \blacktriangleright Low-level infrastructure
- ▶ Thomas Breuer RWTH Aachen
	- \blacktriangleright Julia in Gap
	- \blacktriangleright Representation theory

▶ Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana

- ▶ Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- ▶ Singular: Hans Schoenemann, Janko Boehm, others
- ▶ Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- **>** Singular: Hans Schoenemann, Janko Boehm, others
- ▶ PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- ▶ Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- ▶ Singular: Hans Schoenemann, Janko Boehm, others
- ▶ PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- \blacktriangleright ... You !!??
- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- ▶ Singular: Hans Schoenemann, Janko Boehm, others
- ▶ PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- \blacktriangleright ... You !!??

We are looking for projects that:

 \blacktriangleright Can be broken down into fundamentals

- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- ▶ Singular: Hans Schoenemann, Janko Boehm, others
- ▶ PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- \blacktriangleright ... You !!??

We are looking for projects that:

- \blacktriangleright Can be broken down into fundamentals
- \triangleright Pieces are represented in the four cornerstone systems
- ► Hecke: Claus Fieker, Tommy Hofmann, Carlo Sircana
- ▶ Singular: Hans Schoenemann, Janko Boehm, others
- ▶ PI's: Mohamed Barakat, Wolfram Decker, Claus Fieker, Frank Lübeck, Michael Joswig
- \blacktriangleright ... You !!??

We are looking for projects that:

- \blacktriangleright Can be broken down into fundamentals
- \triangleright Pieces are represented in the four cornerstone systems
- \blacktriangleright Relevant to the TRR

 \blacktriangleright Flint - polynomials and linear algebra

- \blacktriangleright Flint polynomials and linear algebra
- \blacktriangleright Antic number field arith.

- \triangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- \triangleright MPIR (fork of GMP) bignum arithmetic

- \blacktriangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- \triangleright MPIR (fork of GMP) bignum arithmetic

Julia libraries:

 \triangleright Nemo.jl - generic, finitely presented rings

- \blacktriangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- \triangleright MPIR (fork of GMP) bignum arithmetic

Julia libraries:

- \triangleright Nemo.jl generic, finitely presented rings
- \blacktriangleright Hecke.jl number fields, class field theory, algebraic number theory

\blacktriangleright Quadratic sieve integer factorisation

- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \triangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \blacktriangleright van Hoeij factorisation for $\mathbb{Z}[x]$
- \triangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \blacktriangleright van Hoeij factorisation for $\mathbb{Z}[x]$
- \blacktriangleright Multivariate polynomial arithmetic $\mathbb{Z}[x, y, z, \ldots]$

Table: Quadratic sieve timings

APRCL primality test timings

Behrends, Breuer, Gutsche, Hart [OSCAR: A visionary, new computer algebra system](#page-0-0)

Table: FFT timings

Table: Charpoly and minpoly timings

for 80 \times 80 matrix over $\mathbb Z$ with entries in [-20, 20] and minpoly of degree 40.

Table: "Dense" Fateman multiply bench

4 variables

Table: Sparse multiply benchmark

5 variables

Fast generics

- \blacktriangleright JIT compilation : near C performance.
- Designed by mathematically minded people.
- ▶ Open Source (MIT License).
- Actively developed since 2009 .
- ▶ Supports Windows, OSX, Linux, BSD.
- \blacktriangleright Friendly C/Python-like (imperative) syntax.

Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_a , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_a , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_a , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

Nemo capabilities:

 \triangleright Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_a , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

Nemo capabilities:

 \triangleright Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials, dense linear algebra, power series, permutation groups

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_a , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

Nemo capabilities:

 \triangleright Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials, dense linear algebra, power series, permutation groups

Highlights:

Generic polynomial resultant, charpoly, minpoly over an integrally closed domain, Smith and Hermite normal form, Popov form, fast generic determinant, fast sparse multivariate arithmetic

Goefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.

- Goefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $GF(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.

- \triangleright Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, GF(p), etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- \triangleright Groebner basis, resolutions, syzygies

- Goefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- \triangleright Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

 \triangleright Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields

- Goefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- \triangleright Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

- \triangleright Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields
- \triangleright Nemo generics over any Singular ring

 $GAP \longleftrightarrow$ Julia

 $GAP \longleftrightarrow$ Julia

JuliaInterface provides

 $GAP \longleftrightarrow$ Julia

JuliaInterface provides

 \triangleright Conversions of GAP to Julia data and vice versa

 $GAP \longleftrightarrow$ Julia

JuliaInterface provides

- \triangleright Conversions of GAP to Julia data and vice versa
- \triangleright Data structures for Julia objects and functions in GAP

 $GAP \longleftrightarrow$ Julia

JuliaInterface provides

- \triangleright Conversions of GAP to Julia data and vice versa
- \triangleright Data structures for Julia objects and functions in GAP
- \triangleright Possibility to add compiled Julia functions as kernel functions to GAP

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
```
JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
gap> JuliaUnbox( b );
```
2

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
gap> JuliaUnbox( b );
```
Possible conversions:

 \blacktriangleright Integers

2

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
gap> JuliaUnbox( b );
```
Possible conversions:

- \blacktriangleright Integers
- \blacktriangleright Floats

2

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
gap> JuliaUnbox( b );
```
2

Possible conversions:

- \blacktriangleright Integers
- \blacktriangleright Floats
- \blacktriangleright Permutations

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
Possible conversions:

- \blacktriangleright Integers
- \blacktriangleright Floats
- \blacktriangleright Permutations
- \blacktriangleright Finite field elements

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
Possible conversions:

- \blacktriangleright Integers
- \blacktriangleright Floats
- \blacktriangleright Permutations
- \blacktriangleright Finite field elements
- \triangleright Nested lists of the above to Arrays

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap jl_sqrt( 4);
2.
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap jl_sqrt(4);
2.
```
 \blacktriangleright Julia functions can be used like GAP functions
JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt(4);
2.
```
- \blacktriangleright Julia functions can be used like GAP functions
- \blacktriangleright Input data is converted to Julia, return value is converted back to GAP

JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt(4);
2.
```
- \blacktriangleright Julia functions can be used like GAP functions
- \blacktriangleright Input data is converted to Julia, return value is converted back to GAP
- \triangleright Calling only possible for convertible types

JuliaInterface provides the possibility to call Julia functions by converting GAP objects:

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt(4);
2.
```
- \blacktriangleright Julia functions can be used like GAP functions
- \blacktriangleright Input data is converted to Julia, return value is converted back to GAP
- \triangleright Calling only possible for convertible types

```
function orbit( self, element, generators, action )
  work set = \lceil element \rceilreturn_set = \lceil element \rceilgenerator length = gap LengthPlist(generators)
  while length(work set) != \overline{0}current element = pop!(work set)
    for current_generator_number = 1:generator_length
      current generator = gap ListElement(generators,
                                             current_generator_number)
      current_result = gap_CallFunc2Args(action,current_element,
                                           current generator)
      is in set = false
      for i in return_set
        if i == current_result
          is in set = truebreak
        end
      end
      if ! is_in_set
        push!( work_set, current_result )
        push! ( return set, current result )
      end
    end
  end
  return return_set
end
```

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```
Compiled Julia functions come close to the performance of kernel functions:

gap> S := GeneratorsOfGroup(SymmetricGroup(10000));;

Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
gap> orbit_jl( 1, S, OnPoints );; time;
84
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
gap> orbit_jl( 1, S, OnPoints );; time;
84
gap> orbit_c( 1, S, OnPoints );; time;
46
```
 \triangleright stabilization of Syntax for GAP calls in Julia

- \triangleright stabilization of Syntax for GAP calls in Julia
- \triangleright providing sufficient amount of integration of GAP data types on the Julia side

- \triangleright stabilization of Syntax for GAP calls in Julia
- \triangleright providing sufficient amount of integration of GAP data types on the Julia side
- \triangleright unifying GAP and Julia memory management

 \triangleright Both GAP and Julia use garbage collection for memory management.

- \triangleright Both GAP and Julia use garbage collection for memory management.
- \triangleright Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.
- \triangleright Both GAP and Julia use garbage collection for memory management.
- \triangleright Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.
- \triangleright Problem: GAP and Julia have two distinct, incompatible implementations of garbage collection.
- \triangleright Both GAP and Julia use garbage collection for memory management.
- \triangleright Garbage collection: At intervals, find out which objects aren't in use anymore and throw them away.
- \triangleright Problem: GAP and Julia have two distinct, incompatible implementations of garbage collection.
- \triangleright Without additional work, objects may be freed prematurely, leading to memory corruption.

Garbage collection is (in principle) a simple graph algorithm.

- \triangleright Garbage collection is (in principle) a simple graph algorithm.
- \blacktriangleright Find every object reachable from a root.
- \triangleright Garbage collection is (in principle) a simple graph algorithm.
- \blacktriangleright Find every object reachable from a root.
- \triangleright Dispose of objects that could not be reached.
- \triangleright Garbage collection is (in principle) a simple graph algorithm.
- \blacktriangleright Find every object reachable from a root.
- Dispose of objects that could not be reached.
- \blacktriangleright Roots are:
	- \triangleright Global variables (static memory).
	- \triangleright Local variables and temporary values (stack, registers).

Example

Behrends, Breuer, Gutsche, Hart [OSCAR: A visionary, new computer algebra system](#page-0-0)

\blacktriangleright Problem: Two distinct reachability relations.

- \blacktriangleright Problem: Two distinct reachability relations.
- GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.
- \triangleright Problem: Two distinct reachability relations.
- \triangleright GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.
- \blacktriangleright Julia's GC does not know the structure of GAP objects and thus which Julia objects may be reachable from GAP objects or GAP roots.
- \triangleright Problem: Two distinct reachability relations.
- \triangleright GAP's GC does not know the structure of Julia objects and thus which GAP objects may be reachable from Julia objects or Julia roots.
- \blacktriangleright Julia's GC does not know the structure of GAP objects and thus which Julia objects may be reachable from GAP objects or GAP roots.
- \triangleright Result: GAP or Julia objects may be freed prematurely.

Example

Behrends, Breuer, Gutsche, Hart [OSCAR: A visionary, new computer algebra system](#page-0-0)

 \triangleright GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.

- \triangleright GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- \triangleright Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.
- \triangleright GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- \triangleright Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.
- \triangleright Both GAP and Julia use those multisets as additional roots for their reachability algorithms.
- \triangleright GAP tells Julia about any reference from a GAP to a Julia object it has. Julia stores those in a multiset.
- \triangleright Julia tells GAP about any reference from a Julia to a GAP object it has. GAP stores those in a multiset.
- \triangleright Both GAP and Julia use those multisets as additional roots for their reachability algorithms.

Pros:

- \blacktriangleright Relatively straightforward to implement.
- \blacktriangleright Either GC does not need to know how the other works.
- \triangleright Keeps working when GC implementations change.

Pros:

- \blacktriangleright Relatively straightforward to implement.
- \triangleright Either GC does not need to know how the other works.
- \triangleright Keeps working when GC implementations change.

Cons:

- \triangleright Avoidable inefficiencies (multiset implementation).
- \triangleright Unreachable cycles that involve both GAP and Julia objects will not be reclaimed (potential memory leak).
\blacktriangleright Idea: use the same GC for both GAP and Julia.

- \blacktriangleright Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- \blacktriangleright It is possible to use Julia's GC for GAP (with some modifications).
- \blacktriangleright Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- \triangleright It is possible to use Julia's GC for GAP (with some modifications).
- \triangleright GAP supports almost everything the Julia GC requires.
- \blacktriangleright Idea: use the same GC for both GAP and Julia.
- It is not possible to use Julia with the GAP GC, but:
- \triangleright It is possible to use Julia's GC for GAP (with some modifications).
- \triangleright GAP supports almost everything the Julia GC requires.
- Exception: root scanning.
	- \blacktriangleright Julia's GC determines local variable roots precisely.
	- \triangleright GAP's GC assumes *conservative* scanning for local variables.

 \triangleright Scan the entire stack and CPU registers word by word.

- \triangleright Scan the entire stack and CPU registers word by word.
- Anything that may be a pointer to an object is treated like one.
- \triangleright Scan the entire stack and CPU registers word by word.
- Anything that *may* be a pointer to an object is treated like one.
- \triangleright Overly conservative in keeping objects alive.
- \triangleright Scan the entire stack and CPU registers word by word.
- Anything that *may* be a pointer to an object is treated like one.
- \triangleright Overly conservative in keeping objects alive.
- \triangleright GAP needs conservative scanning, but Julia doesn't support it.

 \triangleright Need to derive whether a machine word represents an address pointing to an object:

- \triangleright Need to derive whether a machine word represents an address pointing to an object:
	- 1. Can mostly be derived from Julia's data structures
	- 2. For some cases this needs to be tracked in a separate data structure
- \triangleright We have a proof-of-concept implementation.

Pros:

- \triangleright Avoids the inefficiencies of solution A.
- \blacktriangleright Handles cycles properly and avoids memory leaks.

Pros:

- \triangleright Avoids the inefficiencies of solution A.
- \blacktriangleright Handles cycles properly and avoids memory leaks.

Cons:

 \triangleright Requires modified versions of GAP and Julia.

 \blacktriangleright Neither approach is perfect.

- \blacktriangleright Neither approach is perfect.
- \triangleright Pursue solutions A and B in parallel.
- \blacktriangleright Neither approach is perfect.
- \triangleright Pursue solutions A and B in parallel.
- \triangleright Solution A is minimally invasive and is already used in JuliaInterface.
- \blacktriangleright Neither approach is perfect.
- \triangleright Pursue solutions A and B in parallel.
- \triangleright Solution A is minimally invasive and is already used in JuliaInterface.
- \triangleright We have a partial prototype for solution B.
- \blacktriangleright Neither approach is perfect.
- \triangleright Pursue solutions A and B in parallel.
- \triangleright Solution A is minimally invasive and is already used in JuliaInterface.
- \triangleright We have a partial prototype for solution B.
- \triangleright Next step: Production-ready version of solution B as a minimal patch for Julia/GAP.

From GAP's point of view, Julia can provide

- \blacktriangleright new functionality
- \triangleright speedup via reimplementing pieces of GAP code in Julia
- \triangleright eventually an alternative to parts of GAP?

Classical recommendation:

- I Identify the (small) time critical parts of the code.
- ▶ Rewrite them in C. ("Move them into the GAP kernel".)

Classical recommendation:

- I Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Classical recommendation:

- I Identify the (small) time critical parts of the code.
- Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- \blacktriangleright Identify the time critical parts of the code.
- \blacktriangleright Rewrite them in Julia.

Classical recommendation:

- I Identify the (small) time critical parts of the code.
- \triangleright Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- \blacktriangleright Identify the time critical parts of the code.
- \blacktriangleright Rewrite them in Julia.

Hope to get code that is both as fast as C code and as flexible as GAP code.

Classical recommendation:

- I Identify the (small) time critical parts of the code.
- \triangleright Rewrite them in C. ("Move them into the GAP kernel".)

Problem: 95% of mathematicians are not C programmers!

Now:

- \blacktriangleright Identify the time critical parts of the code.
- \blacktriangleright Rewrite them in Julia.

Hope to get code that is both as fast as C code and as flexible as GAP code.

(Is it easy enough for GAP programmers to take this approach?)

"Low level":

few calls to GAP functions, long nested loops over simple objects

(why not also GAP's C code?)

Which parts of GAP are suitable for this approach?

 \blacktriangleright functions for handling permutations C code in GAP

Which parts of GAP are suitable for this approach?

- \blacktriangleright functions for handling permutations C code in GAP
- \blacktriangleright lattice functions LLL, OrthogonalEmbeddings

Which parts of GAP are suitable for this approach?

- \blacktriangleright functions for handling permutations C code in GAP
- \blacktriangleright lattice functions LLL, OrthogonalEmbeddings
- \triangleright coset enumeration functions tables of small integers
- \blacktriangleright functions for handling permutations C code in GAP
- \blacktriangleright lattice functions LLL, OrthogonalEmbeddings
- \triangleright coset enumeration functions tables of small integers
- \blacktriangleright character theory arithmetics with vectors of (algebraic) integers
- \blacktriangleright functions for handling permutations C code in GAP
- \blacktriangleright lattice functions LLL, OrthogonalEmbeddings
- \triangleright coset enumeration functions tables of small integers
- \blacktriangleright character theory arithmetics with vectors of (algebraic) integers
- \blacktriangleright your suggestions?