OSCAR: A visionary, new computer algebra system

Wolfram Decker, William Hart, Sebastian Gutsche, Michael Joswig

December 11, 2017

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-185-0)

Algorithmic and Experimental Methods

in Algebra, Geometry, and Number Theory

DFG Priority Project SPP 1489

2010–2016

Collaborative Research Center Transregio TRR 195 Symbolic Tools in Mathematics and their Application

2017–

Software Development Within SPP 1489

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

Software Development Within TRR 195

GAP: computational discrete algebra, group and representation theory, general purpose high level interpreted programming language.

julia

Singular: polynomial computations, with emphasis on algebraic geometry, commutative algebra, and singularity theory.

Examples:

- Multigraded equivariant Cox ring of a toric variety over a number field
- Graphs of groups in division algebras
- Matrix groups over polynomial rings over number field

Oscar

Gilui

polymake: convex polytopes, polyhedral and stacky fans, simplicial complexes and related objects from combinatorics and geometry.

ANTIC: number theoretic software featuring computations in and with number fields and generic finitely presented rings.

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

gilui

Central Tasks:

• Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems.

Central Tasks:

• Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk)

Central Tasks:

• Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart

Central Tasks:

- Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart
- Boost the performance of OSCAR to a new level by parallelisation.

Central Tasks:

- Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart
- Boost the performance of OSCAR to a new level by parallelisation. Where do we stand: HPC-GAP, framework for coarse grained parallelization in Singular, experimental framework for fine grained parallelization in Singular;

Central Tasks:

- Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart
- Boost the performance of OSCAR to a new level by parallelisation. Where do we stand: HPC-GAP, framework for coarse grained parallelization in Singular, experimental framework for fine grained parallelization in Singular; massive parallelization via GPI-Space (Fraunhofer ITWM Kaiserslautern, using Petri nets)

Experts among participants: Reimer Behrends, Michael Joswig, Andreas Steenpass; see talk by Janko Böhm

Central Tasks:

- Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart
- Boost the performance of OSCAR to a new level by parallelisation. Where do we stand: HPC-GAP, framework for coarse grained parallelization in Singular, experimental framework for fine grained parallelization in Singular; massive parallelization via GPI-Space (Fraunhofer ITWM Kaiserslautern, using Petri nets)

Experts among participants: Reimer Behrends, Michael Joswig, Andreas Steenpass; see talk by Janko Böhm

Create a central infrastructure for mathematical data.

Central Tasks:

- Integrate all computer algebra systems, libraries and packages developed within the TRR 195 into OSCAR which will surpass the combined mathematical capabilities of the underlying systems. Where do we stand: singular.jl, gap.jl (more in this talk) Experts among participants: Reimer Behrends, Thomas Breuer, Sebastian Gutsche, Bill Hart
- Boost the performance of OSCAR to a new level by parallelisation. Where do we stand: HPC-GAP, framework for coarse grained parallelization in Singular, experimental framework for fine grained parallelization in Singular; massive parallelization via GPI-Space (Fraunhofer ITWM Kaiserslautern, using Petri nets)

Experts among participants: Reimer Behrends, Michael Joswig, Andreas Steenpass; see talk by Janko Böhm

Create a central infrastructure for mathematical data.

Numerous small steps are needed to build OSCAR. Guiding principles:

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

Numerous small steps are needed to build OSCAR. Guiding principles:

Take mathematical problems within TRR195 and international community into account.

Numerous small steps are needed to build OSCAR. Guiding principles:

- Take mathematical problems within TRR195 and international community into account.
- Most steps should be of immediate benefit for users (of current systems and OSCAR).

Numerous small steps are needed to build OSCAR. Guiding principles:

- Take mathematical problems within TRR195 and international community into account.
- Most steps should be of immediate benefit for users (of current systems and OSCAR).
- Rely on existing resources where possible (e.g. Julia).

Example for Immediate Benefits: Singular.jl

Julia access to Singular KERNEL functions and data types:

• Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.

Example for Immediate Benefits: Singular.jl

Julia access to Singular KERNEL functions and data types:

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $GF(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.

Example for Immediate Benefits: Singular.jl

Julia access to Singular KERNEL functions and data types:

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $GF(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Gröbner bases, syzygies, free resolutions

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Gröbner bases, syzygies, free resolutions

Integration with number theory components (Experts among participants: Claus Fieker, Bill Hart, Tommy Hofman):

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Gröbner bases, syzygies, free resolutions

Integration with number theory components (Experts among participants: Claus Fieker, Bill Hart, Tommy Hofman):

Singular polynomials over optimized coefficient rings, e.g. Gröbner bases over cyclotomic fields

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Gröbner bases, syzygies, free resolutions

Integration with number theory components (Experts among participants: Claus Fieker, Bill Hart, Tommy Hofman):

- Singular polynomials over optimized coefficient rings, e.g. Gröbner bases over cyclotomic fields
- Plenty of optimized basic functionality (e.g. linear algebra)

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Gröbner bases, syzygies, free resolutions

Integration with number theory components (Experts among participants: Claus Fieker, Bill Hart, Tommy Hofman):

- Singular polynomials over optimized coefficient rings, e.g. Gröbner bases over cyclotomic fields
- Plenty of optimized basic functionality (e.g. linear algebra)

Author of Singular.jl:

- Bill Hart
- Oleksandr Motsak

Example for Immediate Benefits: Singular.jl Primary Decomposition of Binomial Ideals

Some History

- David Eisenbud and Bernd Sturmfels: Binomial Ideals, 1996
- Thomas Kahle: Macaulay2 package Binomials.M2, 2010
- Clara Petroll: Bachelor thesis, 2017

Example for Immediate Benefits: Singular.jl Primary Decomposition of Binomial Ideals

Some History

- David Eisenbud and Bernd Sturmfels: Binomial Ideals, 1996
- Thomas Kahle: Macaulay2 package Binomials.M2, 2010
- Clara Petroll: Bachelor thesis, 2017

Example (Singular functions for binomial ideals)

Consider pure binomial ideal in three variables:

$$
I = \langle x - y, x^3 - 1, zy^2 - z \rangle \subset \mathbb{C}[x, y, z].
$$

Example for Immediate Benefits: Singular.jl Primary Decomposition of Binomial Ideals

Example (Singular functions for binomial ideals)

```
julia > R, (x,y,z) = Singular. PolynomialRing(QabField(), ["x","y","z"])
julia > I = Ideal(R, x-y, x^3-1, z*y^2-z)julia > isCellular(I)
(false,3)
julia > bcd=cellularDecomp(I)
2-element Array{Singular.sideal,1}:
julia > Singular.intersection(bcd[1], bcd[2])==I
true
julia > binomialPrimaryDecomposition(I)
3-element Array{Any,1}:
Singular Ideal over Singular Polynomial Ring (Coeffs(18)), (x,y,z), (dp(3),C)with generators (y+(-1 \text{ in } \mathbb{Q}(z_1)), x+(-1 \text{ in } \mathbb{Q}(z_1))))Singular Ideal over Singular Polynomial Ring (Coeffs(18)),(x,y,z), (dp(3),C)
with generators (z, y+(-z-3 in Q(z-3)), x+(-z-3 in Q(z-3)))Singular Ideal over Singular Polynomial Ring (Coeffs(18)), (x,y,z), (dp(3),C)with generators (z, y+(z_3+1 \text{ in } \mathbb{Q}(z_3)), x+(z_3+1 \text{ in } \mathbb{Q}(z_3)))
```
Immediate Benefits: The Next Step for Singular

Rewrite the Singular Interpreter in Julia

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

Rewrite the Singular Interpreter in Julia

Benefits:

Speed-up due to Just-In-Time compilation;

Rewrite the Singular Interpreter in Julia

Benefits:

- Speed-up due to Just-In-Time compilation;
- more expressive user language;

Rewrite the Singular Interpreter in Julia

Benefits:

- Speed-up due to Just-In-Time compilation;
- more expressive user language;
- a wealth of Julia features can be used

- JIT compilation : near C performance.
- Designed by mathematically minded people.
- Open Source (MIT License).
- Actively developed since 2009.
- Supports Windows, OSX, Linux, BSD.
- Friendly C/Python-like (imperative) syntax.

Nemo.jl:

 \bullet Flint : polynomials and matrices over \mathbb{Z} , Q, $\mathbb{Z}/p\mathbb{Z}$, \mathbb{F}_q , Q_p

Nemo.jl:

- \bullet Flint : polynomials and matrices over \mathbb{Z} , Q, $\mathbb{Z}/p\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- Arb : ball arithmetic, univariate polys and matrices over **R** and **C**, special and transcendental functions

Nemo.jl:

- \bullet Flint : polynomials and matrices over \mathbb{Z} , Q, $\mathbb{Z}/p\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- Arb : ball arithmetic, univariate polys and matrices over **R** and **C**, special and transcendental functions
- Antic : element arithmetic over absolute number fields

Nemo.jl:

- \bullet Flint : polynomials and matrices over \mathbb{Z} , Q, $\mathbb{Z}/p\mathbb{Z}$, \mathbb{F}_q , \mathbb{O}_p
- Arb : ball arithmetic, univariate polys and matrices over **R** and **C**, special and transcendental functions
- Antic : element arithmetic over absolute number fields

AbstractAlgebra.jl:

Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials

Nemo.jl:

- \bullet Flint : polynomials and matrices over \mathbb{Z} , Q, $\mathbb{Z}/p\mathbb{Z}$, \mathbb{F}_q , \mathbb{O}_p
- Arb : ball arithmetic, univariate polys and matrices over **R** and **C**, special and transcendental functions
- Antic : element arithmetic over absolute number fields

AbstractAlgebra.jl:

Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials, dense linear algebra, power series, permutation groups

• Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- **•** Groebner basis, resolutions, syzygies

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- Polynomials, ideals, modules, matrices, etc.
- Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

- Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields
- Nemo generics over any Singular ring

• Group theory functionality

- **•** Group theory functionality
- Integration with Nemo/Julia
- Group theory functionality
- o Integration with Nemo/Julia
- Interface with Gap: ability to call Julia functions from Gap and vice versa

• Orders and ideals in absolute number fields

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields
- Verified computations with approximations using interval arithmetic whenever necessary (e.g. computation with embeddings or residue computation of Dedekind zeta functions)

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields
- Verified computations with approximations using interval arithmetic whenever necessary (e.g. computation with embeddings or residue computation of Dedekind zeta functions)
- Sparse linear algebra over **Z**

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields
- Verified computations with approximations using interval arithmetic whenever necessary (e.g. computation with embeddings or residue computation of Dedekind zeta functions)
- Sparse linear algebra over **Z**
- Class and unit group computation

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields
- Verified computations with approximations using interval arithmetic whenever necessary (e.g. computation with embeddings or residue computation of Dedekind zeta functions)
- Sparse linear algebra over **Z**
- Class and unit group computation
- Pseudo-Hermite normal form for modules over Dedekind domains

- Orders and ideals in absolute number fields
- Fast ideal and element arithmetic in absolute number fields
- Verified computations with approximations using interval arithmetic whenever necessary (e.g. computation with embeddings or residue computation of Dedekind zeta functions)
- Sparse linear algebra over **Z**
- Class and unit group computation
- Pseudo-Hermite normal form for modules over Dedekind domains
- Beginnings of class field theory and relative extensions
- Projects that make use of all of the above
- Present a consistent view of mathematics to the user: no need to worry about which implementation of the integers is being used behind the scenes
- Explore how far the Julia language can be pushed for computer algebra

Theorem

Suppose M is a linear operator on a K-vector space V, and that $V = W_1 + W_2 + \cdots + W_n$ for invariant subspaces W_i . Then the minimal polynomial of M is LCM (m_1, m_2, \ldots, m_n) , where m_i is the minimal polynomial of M restricted to W_i .

The subspaces we have in mind are the following:

Definition

Given a vector v in a vector space V the Krylov subspace $K(V, v)$ associated to v is the linear subspace spanned by $\{v,\mathit{M}v,\mathit{M}^2v,\ldots\}.$

• Reduce M modulo many small primes p and apply the method above

- Reduce M modulo many small primes p and apply the method above
- Recombine using Chinese remaindering

- Reduce M modulo many small primes p and apply the method above
- Recombine using Chinese remaindering
- (Giesbrecht) Can be finitely many "bad" primes, but these can be detected

- Reduce M modulo many small primes p and apply the method above
- Recombine using Chinese remaindering
- (Giesbrecht) Can be finitely many "bad" primes, but these can be detected

Unfortunately, bounds on number of primes (e.g. Ovals of Cassini) are extremely pessimistic.

- Reduce M modulo many small primes p and apply the method above
- Recombine using Chinese remaindering
- (Giesbrecht) Can be finitely many "bad" primes, but these can be detected

Unfortunately, bounds on number of primes (e.g. Ovals of Cassini) are extremely pessimistic.

Too expensive to evaluate the minpoly $m(T)$ at M. Need a better termination condition.

• Record which standard basis vectors v_i were used to generate the Krylov subspaces W_i modulo p

- Record which standard basis vectors v_i were used to generate the Krylov subspaces W_i modulo p
- When Chinese remaindering stabilises, lift all the v_i to $\mathbb Z$ and check $m(M)v_i=0$

- Record which standard basis vectors v_i were used to generate the Krylov subspaces W_i modulo p
- When Chinese remaindering stabilises, lift all the v_i to $\mathbb Z$ and check $m(M)v_i=0$
- Can be checked using Matrix-Vector products, which are cheap

- Record which standard basis vectors v_i were used to generate the Krylov subspaces W_i modulo p
- When Chinese remaindering stabilises, lift all the v_i to $\mathbb Z$ and check $m(M)v_i=0$
- Can be checked using Matrix-Vector products, which are cheap
- Leads to worst case $O(n^4)$ algorithm, but generically $O(n^3)$

Table: Charpoly and minpoly timings

Op		Sage 6.9 Pari 2.7.4 Magma 2.21-4 Giac 1.2.2 Flint		
Charpoly 0.2s	0.6s	0.06s	0.06s	0.04s
Minpoly 0.07s	>160 hrs 0.05s		0.06s	0.04s

for 80 × 80 matrix over **Z** with entries in [−20, 20] and minpoly of degree 40.

Table: Minpoly timings

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

 $GAP \longleftrightarrow$ Julia

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

 $GAP \longleftrightarrow$ Julia

JuliaInterface and GAP.jl provide

 $GAP \leftrightarrow$ Julia

JuliaInterface and GAP.jl provide

Conversion of basic data types (e.g., integers, lists, permutations) between GAP and Julia
GAP package JuliaInterface and Julia module GAP.jl

 $GAP \leftrightarrow$ Julia

JuliaInterface and GAP.jl provide

- Conversion of basic data types (e.g., integers, lists, permutations) between GAP and Julia
- Use of GAP data types in Julia and Julia data types in GAP

GAP package JuliaInterface and Julia module GAP.jl

 $GAP \leftrightarrow$ Julia

JuliaInterface and GAP.jl provide

- Conversion of basic data types (e.g., integers, lists, permutations) between GAP and Julia
- Use of GAP data types in Julia and Julia data types in GAP
- Use of Julia functions in GAP and GAP functions in Julia

GAP package JuliaInterface and Julia module GAP.jl

 $GAP \leftrightarrow$ Julia

JuliaInterface and GAP.jl provide

- Conversion of basic data types (e.g., integers, lists, permutations) between GAP and Julia
- Use of GAP data types in Julia and Julia data types in GAP
- Use of Julia functions in GAP and GAP functions in Julia
- Possibility to add compiled Julia functions as kernel functions to GAP

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
```
JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{L}gap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\Omegagap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```

```
o Integers
```
JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\Omegagap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
- **o** Integers
- **o** Floats

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\Omegagap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
- **o** Integers
- **o** Floats
- **•** Permutations

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\mathcal{D}gap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
- **o** Integers
- **o** Floats
- **•** Permutations
- **•** Finite field elements

JuliaInterface contains GAP data structures that can hold pointers to Julia objects:

```
gap> a := 2;
\Omegagap b := JuliaBox(a);
<Julia: 2>
```

```
gap> JuliaUnbox( b );
2
```
- Integers
- **o** Floats
- **•** Permutations
- **•** Finite field elements
- Nested lists of the above to Arrays

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
gap il_sqrt(4);
```

```
2.
```

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
gap il_sqrt(4);
2.
```
Julia functions can be used like GAP functions

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
gap jl<sub>sqrt</sub>(4);
2.
```
- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
gap jl<sub>sqrt</sub>(4);
2.
```
- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP
- Calling only possible for convertible types

```
gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>
gap jl<sub>sqrt</sub>(4);
2.
```
- Julia functions can be used like GAP functions
- Input data is converted to Julia, return value is converted back to GAP
- Calling only possible for convertible types

```
function orbit( self, element, generators, action )
 work set = \lceil element \rceilreturn_set = [ element ]
 generator length = gap LengthPlist(generators)
 while length(work set) != \overline{0}current element = pop!(work set)
   for current_generator_number = 1:generator_length
      current generator = gap ListElement(generators,
                                            current_generator_number)
      current_result = gap_CallFunc2Args(action,current_element,
                                           current_generator)
     is in set = false
     for i in return_set
       if i == current_result
          is in set = truebreak
        end
      end
     if ! is_in_set
        push!( work_set, current_result )
        push!( return set, current result )
      end
   end
  end
 return return_set
end
```

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
```

```
gap> orbit( 1, S, OnPoints );; time;
5769
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
gap> orbit_jl( 1, S, OnPoints );; time;
84
```
Using JuliaInterface, it is possible to write Julia functions and use them as GAP kernel functions:

```
gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );
```

```
gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;
gap> orbit( 1, S, OnPoints );; time;
5769
gap> orbit_jl( 1, S, OnPoints );; time;
84
gap> orbit_c( 1, S, OnPoints );; time;
46
```


Speedup

Now: Find time critical parts of algorithms, rewrite them in C.

Speedup

- Now: Find time critical parts of algorithms, rewrite them in C.
- Future: Find time critical parts of algorithms, rewrite them in Julia.

Speedup

- Now: Find time critical parts of algorithms, rewrite them in C.
- Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:

Speedup

- Now: Find time critical parts of algorithms, rewrite them in C.
- Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:

Julia is more flexible then C

Speedup

- Now: Find time critical parts of algorithms, rewrite them in C.
- Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:

- Julia is more flexible then C
- Julia has more functionality available in its standard library than C

Speedup

- Now: Find time critical parts of algorithms, rewrite them in C.
- Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:

- Julia is more flexible then C
- Julia has more functionality available in its standard library than C
- Julia may be easier to use then C
Language features

Flexible type system: Objects can learn about themselves

- Flexible type system: Objects can learn about themselves
- Built-in traits: Known properties of objects decide which variant of an algorithm to use

- Flexible type system: Objects can learn about themselves
- Built-in traits: Known properties of objects decide which variant of an algorithm to use
- Immediate propagation: Second execution layer is used to spread properties between objects

- Flexible type system: Objects can learn about themselves
- Built-in traits: Known properties of objects decide which variant of an algorithm to use
- Immediate propagation: Second execution layer is used to spread properties between objects
- Categorical programming language as defined in the CAP project

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

abstracts mathematical structures

- abstracts mathematical structures
- defines a *language* to formulate theorems and algorithms for different structures at the same time

- abstracts mathematical structures
- defines a *language* to formulate theorems and algorithms for different structures at the same time

CAP - Categories, Algorithms, Programming

- abstracts mathematical structures
- defines a *language* to formulate theorems and algorithms for different structures at the same time

CAP - Categories, Algorithms, Programming

CAP implements a categorical programming language (j/w Sebastian Posur)

Definition

Definition

A category A contains the following data:

 \bullet Obj_A

 A B C

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)

 A B C

Definition

- \bullet Obj_A
- \bullet Hom_A (A, B)

Definition

- \bullet Obj_A
- \bullet Hom_A (A, B)

Definition

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)

Definition

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom_A (A, B)
- \circ : Hom_A(B, C) \times Hom_A(A, B) \rightarrow Hom_A(A, C) (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive,

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

• data structures for objects and morphisms

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

• data structures for objects and morphisms

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

• data structures for objects and morphisms

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

- **•** data structures for objects and morphisms
- algorithms for composition and identity morphism

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

- **•** data structures for objects and morphisms
- algorithms for composition and identity morphism

Definition

A category A contains the following data:

- \bullet Obj_A
- \bullet Hom $_A(A, B)$
- \circ : Hom $_A(B, C) \times$ Hom $_A(A, B) \rightarrow$ Hom $_A(A, C)$ (assoc.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Computable Category

A category becomes computable by making the existential quantifiers from the definition of a category constructive, i.e., giving

- **•** data structures for objects and morphisms
- algorithms for composition and identity morphism

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

• Zero morphisms

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

- Zero morphisms
- Addition and subtraction of morphisms

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms
- \bullet ...

Decker, Gutsche, Hart, Joswig **[OSCAR: A visionary, new computer algebra system](#page-0-0)**
Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$.

Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$.

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of φ ...

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

```
. . . one needs an object ker ϕ,
```


. . . one needs an object ker *ϕ*, its embedding $\kappa =$ KernelEmbedding(φ),

. . . one needs an object ker *ϕ*, its embedding $\kappa =$ KernelEmbedding(φ), and for every test morphism *τ*

. . . one needs an object ker *ϕ*, its embedding $\kappa =$ KernelEmbedding(φ), and for every test morphism *τ* a *unique* morphism $\lambda =$ KernelLift(φ, τ)

. . . one needs an object ker *ϕ*, its embedding $\kappa =$ KernelEmbedding(φ), and for every test morphism *τ* a *unique* morphism $\lambda =$ KernelLift(φ , τ), such that

Decker, Gutsche, Hart, Joswig [OSCAR: A visionary, new computer algebra system](#page-0-0)

CAP is a framework to implement computable categories and provides

CAP is a framework to implement computable categories and provides

• specifications of categorical operations

CAP is a framework to implement computable categories and provides

- **•** specifications of categorical operations
- **•** generic algorithms based on basic categorical operations

CAP is a framework to implement computable categories and provides

- **•** specifications of categorical operations
- **•** generic algorithms based on basic categorical operations
- a categorical programming language having categorical operations as syntax elements

Let $M_1 \subseteq N$ and $M_2 \subseteq N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

$$
\bullet \ \varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
$$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

$$
\bullet \ \varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
$$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $Φ$:= *ι*₁ $π_1$ − *ι*₂ $π_2$
- κ := KernelEmbedding (φ)

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $Φ$:= *ι*₁ $π_1$ − *ι*₂ $π_2$
- κ := KernelEmbedding (φ)

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $Φ$:= *ι*₁ $π_1$ − *ι*₂ $π_2$
- $\bullet \; \kappa :=$ KernelEmbedding (φ)
- $\gamma := \iota_1 \circ \pi_1 \circ \kappa$

Translation to CAP

 $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

 $φ := l_1 ∘ π_1 - l_2 ∘ π_2$

 κ := KernelEmbedding (φ)

 $γ := l_1 ∘ π_1 ∘ κ$

Translation to CAP

 $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```
 $φ := l_1 ∘ π_1 - l_2 ∘ π_2$

 κ := KernelEmbedding (φ)

 $γ := l_1 ∘ π_1 ∘ κ$

 $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
```

```
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
```

```
\kappa := KernelEmbedding (\varphi)
```
 $γ := l_1 ∘ π_1 ∘ k$

 $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
```

```
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
```

```
\kappa := KernelEmbedding (\varphi)
```
kappa := KernelEmbedding(phi);

 $γ := l_1 ∘ π_1 ∘ k$

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
```

```
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
```

```
\kappa := KernelEmbedding (\varphi)
```

```
kappa := KernelEmbedding( phi );
```

```
γ := l_1 ∘ π_1 ∘ k
```

```
gamma := PostCompose( lambda, kappa );
```

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
```
kappa := KernelEmbedding(phi);

```
gamma := PostCompose( lambda, kappa );
```

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```
IntersectionOfObjects := function(iota1, iota2)

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```
IntersectionOfObjects := function(iota1, iota2)

```
M1 := Source( total);M2 := Source( total 2):pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```
IntersectionOfObjects := function(iota1, iota2)

```
M1 := Source( total);M2 := Source( total 2):pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iota1, pi1 );
  phi := lambda - PostCompose( iota2, pi2 );
 kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
 return gamma;
end;
```

```
IntersectionOfObjects := function( iota1, iota2 )
  local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
  M1 := Source( total):M2 := Source( total 2):pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
 lambda := PostCompose( iota1, pi1 );
  phi := lambda - PostCompose( iota2, pi2 );
 kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
 return gamma;
end;
```

$$
\begin{aligned}\n\text{In [1]:} &= \text{Integrate [ArcTan[x] - ArcCot[1/x], {x, 0, 1}]} \\
\text{Out[1]} &= 0 \\
\text{In [2]:} &= \text{Integrate [ArcTan[x] - ArcCot[1/x], {x, 0, 1.0}]} \\
&\quad -15 \\
\text{Out[2]} &= -7.88258 \, 10\n\end{aligned}
$$

$$
\begin{aligned}\n\text{In [1]:} &= \text{Integrate } [\text{ArcTan}[x] - \text{ArcCot}[1/x], \{x, 0, 1\}] \\
\text{Out[1]} &= 0 \\
\text{In [2]:} &= \text{Integrate } [\text{ArcTan}[x] - \text{ArcCot}[1/x], \{x, 0, 1.0\}] \\
&\quad -15 \\
\text{Out[2]} &= -7.88258 \ 10 \\
\text{In [3]:} &= \text{FullSimplify } [\text{ArcTan}[x] - \text{ArcCot}[1/x]] \\
\text{Out[3]} &= 0\n\end{aligned}
$$

Sage: Gröbner Bases

 $a = 1$ $b = 2$ $c = -3$

$$
x, y = QQ['x, y'].gens ()
$$
\n
$$
f = a*x^3*y^2+b*x+y^2+1
$$
\n
$$
g = c*x*y^4+x^3+y
$$
\n
$$
I = ideal(f, g)
$$
\n
$$
B = I.groebner_basis(); B
$$
\n
$$
[y^6 + 1/3*x^2*y^3 - 1/3*x^2*y^2 + y^4 - 1/3*x^2 + 2/3*x]
$$

$$
- 1/3*x^2 + 2/3*y,
$$

\nx^5 + 3*y^4 + x^2*y + 6*x*y^2 + 3*y^2,
\nx^3*y^2 + y^2 + 2*x + 1,
\nx*y^4 - 1/3*x^3 - 1/3*y]

var('x,y')
\nf = a*x^3*y^2+b*x+y^2+1
\ng = c*x*y^4+x^3+y
\nC = implicit.plot(f, (x, -2,2), (y, -2,2),
\n
$$
cmp=['red'], plot_points=150, fill=False)
$$

\nD = implicit.plot(g, (x, -2,2), (y, -2,2),

$$
comp=['blue'], plot_points=150, fill=False)
$$

Ch