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Software Development Within TRR 195: OSCAR

Central Tasks:
Integrate all computer algebra systems, libraries and packages
developed within the TRR 195 into OSCAR which will surpass the
combined mathematical capabilities of the underlying systems.

Where do we stand: singular.jl, gap.jl (more in this talk)
Experts among participants: Reimer Behrends, Thomas Breuer,
Sebastian Gutsche, Bill Hart
Boost the performance of OSCAR to a new level by parallelisation.
Where do we stand: HPC-GAP, framework for coarse grained
parallelization in Singular, experimental framework for fine grained
parallelization in Singular; massive parallelization via GPI-Space
(Fraunhofer ITWM Kaiserslautern, using Petri nets)
Experts among participants: Reimer Behrends, Michael Joswig,
Andreas Steenpass; see talk by Janko Böhm
Create a central infrastructure for mathematical data.
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Software Development Within TRR 195: OSCAR

Numerous small steps are needed to build OSCAR. Guiding principles:

Take mathematical problems within TRR195 and international
community into account.
Most steps should be of immediate benefit for users (of current
systems and OSCAR).
Rely on existing resources where possible (e.g. Julia).
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Example for Immediate Benefits: Singular.jl

Julia access to Singular KERNEL functions and data types:

Coefficient rings Z, Q, Z/nZ, GF(p), etc.

Polynomials, ideals, modules, matrices, etc.
Gröbner bases, syzygies, free resolutions

Integration with number theory components (Experts among participants:
Claus Fieker, Bill Hart, Tommy Hofman):

Singular polynomials over optimized coefficient rings, e.g. Gröbner
bases over cyclotomic fields
Plenty of optimized basic functionality (e.g. linear algebra)

Author of Singular.jl:

Bill Hart
Oleksandr Motsak
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Example for Immediate Benefits: Singular.jl
Primary Decomposition of Binomial Ideals

Some History
David Eisenbud and Bernd Sturmfels: Binomial Ideals, 1996
Thomas Kahle: Macaulay2 package Binomials.M2, 2010
Clara Petroll: Bachelor thesis, 2017

Example (Singular functions for binomial ideals)

Consider pure binomial ideal in three variables:

I = 〈x − y , x3 − 1, zy2 − z〉 ⊂ C[x , y , z ].
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Example for Immediate Benefits: Singular.jl
Primary Decomposition of Binomial Ideals

Example (Singular functions for binomial ideals)

julia > R,(x,y,z) = Singular.PolynomialRing(QabField(), ["x","y","z"])
julia > I = Ideal(R,x-y,xˆ3-1,z*yˆ2-z)
julia > isCellular(I)
(false,3)
julia > bcd=cellularDecomp(I)
2-element Array{Singular.sideal,1}:
julia > Singular.intersection(bcd[1], bcd[2])==I
true
julia > binomialPrimaryDecomposition(I)
3-element Array{Any,1}:
Singular Ideal over Singular Polynomial Ring (Coeffs(18)),(x,y,z),(dp(3),C)
with generators (y+(-1 in Q(z_1)), x+(-1 in Q(z_1)))
Singular Ideal over Singular Polynomial Ring (Coeffs(18)),(x,y,z),(dp(3),C)
with generators (z, y+(-z_3 in Q(z_3)), x+(-z_3 in Q(z_3)))
Singular Ideal over Singular Polynomial Ring (Coeffs(18)),(x,y,z),(dp(3),C)
with generators (z, y+(z_3+1 in Q(z_3)), x+(z_3+1 in Q(z_3)))
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Immediate Benefits: The Next Step for Singular

Rewrite the Singular Interpreter in Julia

Benefits:

Speed-up due to Just-In-Time compilation;
more expressive user language;
a wealth of Julia features can be used
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JIT compilation : near C performance.
Designed by mathematically minded people.
Open Source (MIT License).
Actively developed since 2009.
Supports Windows, OSX, Linux, BSD.
Friendly C/Python-like (imperative) syntax.
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Nemo.jl:

Flint : polynomials and matrices over Z, Q, Z/pZ, Fq, Qp

Arb : ball arithmetic, univariate polys and matrices over R and C,
special and transcendental functions
Antic : element arithmetic over absolute number fields

AbstractAlgebra.jl:

Generic rings: residue rings, fraction fields, dense univariate
polynomials, sparse distributed multivariate polynomials, dense linear
algebra, power series, permutation groups
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Singular.jl

Access to Singular kernel functions and data types:

Coefficient rings Z, Q, Z/nZ, GF(p), etc.

Polynomials, ideals, modules, matrices, etc.
Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

Singular polynomials over any Nemo coefficient ring, e.g. Groebner
bases over cyclotomic fields
Nemo generics over any Singular ring
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GAP.jl

Group theory functionality

Integration with Nemo/Julia
Interface with Gap: ability to call Julia functions from Gap and vice
versa
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Hecke.jl

Algebraic number theory for Julia, built on Nemo.jl, AbstractAlgebra.jl,
Flint, Antic, etc.

Orders and ideals in absolute number fields
Fast ideal and element arithmetic in absolute number fields
Verified computations with approximations using interval arithmetic
whenever necessary (e.g. computation with embeddings or residue
computation of Dedekind zeta functions)
Sparse linear algebra over Z

Class and unit group computation
Pseudo-Hermite normal form for modules over Dedekind domains
Beginnings of class field theory and relative extensions
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Pseudo-Hermite normal form for modules over Dedekind domains

Beginnings of class field theory and relative extensions
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Oscar.jl (future work)

Projects that make use of all of the above
Present a consistent view of mathematics to the user: no need to
worry about which implementation of the integers is being used behind
the scenes
Explore how far the Julia language can be pushed for computer algebra

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



Example improvement: Minpoly over Z

Theorem
Suppose M is a linear operator on a K -vector space V , and that
V = W1 +W2 + · · ·+Wn for invariant subspaces Wi . Then the minimal
polynomial of M is LCM(m1,m2, . . . ,mn), where mi is the minimal
polynomial of M restricted to Wi .
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Example improvement: Minpoly over Z

The subspaces we have in mind are the following:

Definition
Given a vector v in a vector space V the Krylov subspace K (V , v)
associated to v is the linear subspace spanned by {v ,Mv ,M2v , . . .}.

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



Example improvement: Minpoly over Z

Idea:

Reduce M modulo many small primes p and apply the method above

Recombine using Chinese remaindering
(Giesbrecht) Can be finitely many “bad” primes, but these can be
detected

Unfortunately, bounds on number of primes (e.g. Ovals of Cassini) are
extremely pessimistic.

Too expensive to evaluate the minpoly m(T ) at M. Need a better
termination condition.
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Example improvement: Minpoly over Z

Idea:

Record which standard basis vectors vi were used to generate the
Krylov subspaces Wi modulo p

When Chinese remaindering stabilises, lift all the vi to Z and check
m(M)vi = 0
Can be checked using Matrix-Vector products, which are cheap
Leads to worst case O(n4) algorithm, but generically O(n3)
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Characteristic and minimal polynomial

Table: Charpoly and minpoly timings

Op Sage 6.9 Pari 2.7.4 Magma 2.21-4 Giac 1.2.2 Flint

Charpoly 0.2s 0.6s 0.06s 0.06s 0.04s
Minpoly 0.07s >160 hrs 0.05s 0.06s 0.04s

for 80× 80 matrix over Z with entries in [−20, 20] and minpoly of degree
40.
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Minimal polynomial over Z[x ]

Table: Minpoly timings

Op Sage 6.9 Pari 2.7.4 Magma 2.21-4 Nemo-0.4

Minpoly — > 160 hrs — 0.04s
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JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists, permutations)
between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions to GAP
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JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers to Julia
objects:

gap> a := 2;
2
gap> b := JuliaBox( a );
<Julia: 2>

gap> JuliaUnbox( b );
2

Possible conversions:

Integers
Floats
Permutations
Finite field elements
Nested lists of the above to Arrays
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JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by converting
GAP objects:

gap> jl_sqrt := JuliaFunction( "sqrt" );
<Julia function: sqrt>

gap> jl_sqrt( 4 );
2.

Julia functions can be used like GAP functions
Input data is converted to Julia, return value is converted back to GAP
Calling only possible for convertible types
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JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use them as
GAP kernel functions:

function orbit( self, element, generators, action )
work_set = [ element ]
return_set = [ element ]
generator_length = gap_LengthPlist(generators)
while length(work_set) != 0

current_element = pop!(work_set)
for current_generator_number = 1:generator_length
current_generator = gap_ListElement(generators,

current_generator_number)
current_result = gap_CallFunc2Args(action,current_element,

current_generator)
is_in_set = false
for i in return_set

if i == current_result
is_in_set = true
break

end
end
if ! is_in_set

push!( work_set, current_result )
push!( return_set, current_result )

end
end

end
return return_set

end
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JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use them as
GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46
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From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup

Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.

Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:

Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C

Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C

Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the GAP side

How does GAP benefit from OSCAR (except mathematical algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in Julia.

Benefits:
Julia is more flexible then C
Julia has more functionality available in its standard library than C
Julia may be easier to use then C

Decker, Gutsche, Hart, Joswig OSCAR: A visionary, new computer algebra system



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical algorithms)?

Language features
Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which variant of an
algorithm to use
Immediate propagation: Second execution layer is used to spread
properties between objects
Categorical programming language as defined in the CAP project
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Computable categories

Definition
A category A contains the following data:

ObjA

HomA(A,B)

◦ : HomA(B,C )×HomA(A,B)→ HomA(A,C )

(assoc.)

Neutral elements: idA ∈ HomA(A,A)

A B C
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Computable categories

Some categorical operations in abelian categories

Zero morphisms
Addition and subtraction of morphisms
Direct sums
Kernels and Cokernels of morphisms
...
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Implementation of the kernel

Let ϕ ∈ Hom(A,B).

To fully describe the kernel of ϕ . . .

. . . one needs an object ker ϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

ker ϕ

T

ϕ

0

κ

τ

0

λ �
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What is CAP ?

CAP - Categories, Algorithms, and Programming

CAP is a framework to implement computable categories and provides
specifications of categorical operations
generic algorithms based on basic categorical operations
a categorical programming language having categorical operations as
syntax elements
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Computing the intersection

Let M1 ⊆ N and M2 ⊆ N subobjects.

Compute their intersection γ : M1 ∩M2 ↪→ N.

M1 ∩M2 M1 ⊕M2

M1

M2

N

ι2

ι1π1

π2

ϕ := ι1 ◦ π1 − ι2 ◦ π2κκ

π1 ι1

M1 ∩M2 N

πi := ProjectionInFactorOfDirectSum ((M1,M2) , i), i = 1, 2
ϕ := ι1 ◦ π1 − ι2 ◦ π2

κ := KernelEmbedding (ϕ)

γ := ι1 ◦ π1 ◦ κ
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Computing the intersection

Let M1↪→ N and M2↪→ N subobjects.
Compute their intersection γ : M1 ∩M2 ↪→ N.
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Translation to CAP

πi := ProjectionInFactorOfDirectSum ((M1,M2) , i), i = 1, 2

pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

ϕ := ι1 ◦ π1 − ι2 ◦ π2

lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );

κ := KernelEmbedding (ϕ)

kappa := KernelEmbedding( phi );

γ := ι1 ◦ π1 ◦ κ

gamma := PostCompose( lambda, kappa );
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Translation to CAP

IntersectionOfObjects := function( iota1, iota2 )

local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;

M1 := Source( iota1 );
M2 := Source( iota2 );

pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );

return gamma;
end;
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Mathematica: Integration

I n [ 1 ] := I n t e g r a t e [ ArcTan [ x ] − ArcCot [1/ x ] , {x , 0 , 1 } ]

Out [1 ]= 0

In [ 2 ] := I n t e g r a t e [ ArcTan [ x ] − ArcCot [1/ x ] , {x , 0 , 1 . 0 } ]

−15
Out [2]= −7.88258 10

In [ 3 ] := F u l l S i m p l i f y [ ArcTan [ x ] − ArcCot [1/ x ] ]

Out [3 ]= 0
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Sage: Gröbner Bases

a = 1
b = 2
c = −3

x , y = QQ[ ’ x , y ’ ] . gens ( )
f = a∗x^3∗y^2+b∗x+y^2+1
g = c∗x∗y^4+x^3+y
I = i d e a l ( f , g )
B = I . g r o ebne r_bas i s ( ) ; B

[ y^6 + 1/3∗ x^2∗y^3 − 1/3∗ x^2∗y^2 + y^4
− 1/3∗ x^2 + 2/3∗y ,

x^5 + 3∗y^4 + x^2∗y + 6∗x∗y^2 + 3∗y^2 ,
x^3∗y^2 + y^2 + 2∗x + 1 ,
x∗y^4 − 1/3∗ x^3 − 1/3∗ y ]
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Sage: Plotting Curves

va r ( ’ x , y ’ )
f = a∗x^3∗y^2+b∗x+y^2+1
g = c∗x∗y^4+x^3+y

C = i mp l i c i t_ p l o t ( f , ( x ,−2 ,2) , ( y ,−2 ,2) ,
cmap=[ ’ r ed ’ ] , p l o t_po i n t s =150 , f i l l =Fa l s e )

D = im p l i c i t _ p l o t ( g , ( x ,−2 ,2) , ( y ,−2 ,2) ,
cmap=[ ’ b l u e ’ ] , p l o t_po i n t s =150 , f i l l =Fa l s e )

C+D
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