
Oscar/Nemo.jl: A Julia package for computer
algebra

Claus Fieker, William Hart,
Tommy Hofmann, Fredrik Johansson,

Marek Kaluba

March 6, 2018

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : cornerstone systems

I Gap : Group theory (discrete algebra)
I Singular : Polynomials, algebra, geometry
I Polymake : Polyhedreal geometry
I Antic : Algebraic number theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : cornerstone systems

I Gap : Group theory (discrete algebra)
I Singular : Polynomials, algebra, geometry
I Polymake : Polyhedreal geometry
I Antic : Algebraic number theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms

I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries

I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory

I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel

I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia

I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Oscar components : Julia packages

I AbstractAlgebra.jl : generic algorithms
I Nemo.jl : wrappers of Flint, Arb and Antic C libraries
I Hecke.jl : Algebraic number theory, class field theory
I Singular.jl : wrapper of the Singular kernel
I libGap.jl : interface to Gap from Julia
I Polymake.jl : interface to Polymake from Julia

I JuliaInterface : Access to Julia from Gap

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra

I Antic - number field arithmetic
I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries
I AbstractAlgebra.jl - generic rings and fields
I Hecke.jl - number fields, class field theory, algebraic number

theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra
I Antic - number field arithmetic

I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries
I AbstractAlgebra.jl - generic rings and fields
I Hecke.jl - number fields, class field theory, algebraic number

theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra
I Antic - number field arithmetic
I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries
I AbstractAlgebra.jl - generic rings and fields
I Hecke.jl - number fields, class field theory, algebraic number

theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra
I Antic - number field arithmetic
I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries

I AbstractAlgebra.jl - generic rings and fields
I Hecke.jl - number fields, class field theory, algebraic number

theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra
I Antic - number field arithmetic
I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries
I AbstractAlgebra.jl - generic rings and fields

I Hecke.jl - number fields, class field theory, algebraic number
theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Antic cornerstone

C libraries:

I Flint - polynomials and linear algebra
I Antic - number field arithmetic
I Arb - real and complex ball arithmetic

Julia libraries:

I Nemo.jl - wrappers of the C libraries
I AbstractAlgebra.jl - generic rings and fields
I Hecke.jl - number fields, class field theory, algebraic number

theory

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation

I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation

I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test

I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT

I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form

I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial

I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features in Flint

I Quadratic sieve integer factorisation
I Elliptic curve integer factorisation
I APRCL primality test
I Parallelised FFT
I Howell form
I Characteristic and minimal polynomial
I van Hoeij factorisation for Z[x]

I Multivariate polynomial arithmetic over Z, Z/nZ, Q

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Integer factorisation : Quadratic sieve

Table: Quadratic sieve timings

Digits Pari/GP Flint (1 core) Flint (4 cores)

50 0.43 0.55 0.39
59 3.8 3.0 1.7
68 38 21 14
77 257 140 52
83 2200 1500 540

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

APRCL primality test timings

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

FFT: Integer and polynomial multiplication

Table: FFT timings

Words 1 core 4 cores 8 cores

110k 0.07s 0.05s 0.05s
360k 0.3s 0.1 0.1s
1.3m 1.1s 0.4s 0.3s
4.6m 4.5s 1.5s 1.0s
26m 28s 9s 6s
120m 140s 48s 33s
500m 800s 240s 150s

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Characteristic and minimal polynomial

Table: Charpoly and minpoly timings

Op Sage 6.9 Pari 2.7.4 Magma 2.21-4 Giac 1.2.2 Flint

Charpoly 0.2s 0.6s 0.06s 0.06s 0.04s
Minpoly 0.07s >160 hrs 0.05s 0.06s 0.04s

for 80× 80 matrix over Z with entries in [−20, 20] and minpoly of
degree 40.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Multivariate multiplication

Table: “Dense” Fateman multiply bench

n Sage Singular Magma Giac Piranha Trip Flint

5 0.0063s 0.0048s 0.0018s 0.00023s 0.0011s 0.00057s 0.00023s
10 0.51s 0.11s 0.12s 0.0056s 0.029s 0.023s 0.0043s
15 9.1s 1.4s 1.9s 0.11s 0.39s 0.21s 0.045s
20 75s 21s 16s 0.62s 2.9s 2.3s 0.48s
25 474s 156s 98s 2.8s 14s 12s 2.3s
30 1667s 561s 440s 14s 56s 41s 10s

4 variables

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Multivariate multiplication

Table: Sparse multiply benchmark

n Sage Singular Magma Giac Piranha Trip Flint

4 0.0066s 0.0050s 0.0062s 0.0046s 0.0033s 0.0015s 0.0014s
6 0.15s 0.11s 0.080s 0.030s 0.025s 0.016s 0.016s
8 1.6s 0.79s 0.68s 0.28s 0.15s 0.10s 0.10s
10 8s 3.6s 3.0s 1.5s 0.62s 0.40s 0.48s
12 43s 14s 11s 4.8s 2.2s 2.2s 2.0s
14 173s 63s 37s 14s 6.7s 12s 7.2s
16 605s 201s 94s 39s 20s 39s 19s

5 variables

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac

I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats

I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode

I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading

I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming

I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular

I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source

I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax

I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected

I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Language for generic programming

I Support for Windows, Linux, Mac
I 64 bit integers and double precision floats
I Console/REPL mode
I Operator overloading
I Fast generics and metaprogramming
I Maintained and popular
I Open source
I Imperative syntax
I Garbage collected
I Easy/efficient C interop

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Efficient generics

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Efficient generics

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

I JIT compilation : near C performance.
I Designed by mathematically minded people.
I Open Source (MIT License).
I Actively developed since 2009.
I Supports Windows, OSX, Linux, BSD.
I Friendly C/Python-like (imperative) syntax.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

I JIT compilation : near C performance.
I Designed by mathematically minded people.
I Open Source (MIT License).
I Actively developed since 2009.
I Supports Windows, OSX, Linux, BSD.
I Friendly C/Python-like (imperative) syntax.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

AbstractAlgebra/Nemo capabilities:

I residue rings

I fraction fields
I dense univariate polynomials
I dense linear algebra
I power series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

AbstractAlgebra/Nemo capabilities:

I residue rings
I fraction fields

I dense univariate polynomials
I dense linear algebra
I power series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

AbstractAlgebra/Nemo capabilities:

I residue rings
I fraction fields
I dense univariate polynomials

I dense linear algebra
I power series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

AbstractAlgebra/Nemo capabilities:

I residue rings
I fraction fields
I dense univariate polynomials
I dense linear algebra

I power series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

AbstractAlgebra/Nemo capabilities:

I residue rings
I fraction fields
I dense univariate polynomials
I dense linear algebra
I power series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields

I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series

I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form

I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials

I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series

I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters

I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants

I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation

I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

New features of AbstractAlgebra/Nemo:

I Residue fields
I Laurent series
I Generic HNF, SNF, Popov form
I Generic multivariate polynomials
I Capped absolute power series
I Permutation groups, Young tableaux, characters
I Ducos’ algorithm for resultants
I Rewritten documentation
I Integration with Singular.jl

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function
I Periodic with period 1, so has Fourier expansion, called a

q-expansion:
I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where

q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function
I Periodic with period 1, so has Fourier expansion, called a

q-expansion:
I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where

q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function
I Periodic with period 1, so has Fourier expansion, called a

q-expansion:
I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where

q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function

I Periodic with period 1, so has Fourier expansion, called a
q-expansion:

I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where
q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function
I Periodic with period 1, so has Fourier expansion, called a

q-expansion:

I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where
q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Appplication: modular equations

I My thesis was on computing abelian extension of number
fields via modular equations:

I Relation Pn(A(τ),A(nτ)) = 0 for modular function A(τ) and
polynomial Pn(X ,Y), for all τ in complex upper half plane

I Can specialise at certain values of τ to give “small” generating
polynomials for extensions of number fields

I Example: Klein j-function is a modular function
I Periodic with period 1, so has Fourier expansion, called a

q-expansion:
I j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · , where

q = exp(2πiτ)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation example

I For n = 2: P2(j(τ), j(2τ)) = 0 for

P2(X ,Y) = X 3−X 2Y 2+1488X 2Y 2−162000X 2+1488XY 2

40773374XY +8748000000X +Y 2−162000Y 2+8748000000Y
− 157464000000000.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Dedekind eta function

I η(τ) = q1/24∏∞
n=1(1− qn).

I Not a modular function, but quotients of them are
I Enter the Weber functions:

f(τ) =
η2(τ)

η(τ/2)η(2τ)
,

f1(τ) =
η(τ/2)

η(τ)
,

f2(τ) =

√
2η(2τ)

η(τ)
.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Dedekind eta function

I η(τ) = q1/24∏∞
n=1(1− qn).

I Not a modular function, but quotients of them are

I Enter the Weber functions:

f(τ) =
η2(τ)

η(τ/2)η(2τ)
,

f1(τ) =
η(τ/2)

η(τ)
,

f2(τ) =

√
2η(2τ)

η(τ)
.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Dedekind eta function

I η(τ) = q1/24∏∞
n=1(1− qn).

I Not a modular function, but quotients of them are
I Enter the Weber functions:

f(τ) =
η2(τ)

η(τ/2)η(2τ)
,

f1(τ) =
η(τ/2)

η(τ)
,

f2(τ) =

√
2η(2τ)

η(τ)
.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations for Weber functions

I Classically modular equations are computed for primes n > 2

I For example, for n = 13 we have Φ13(f(τ), f(13τ)) = 0 where

Φ13(X ,Y) = X 14 − X 13Y 13 + 13X 12Y 2 + 52X 10Y 4

+78X 8Y 6 +78X 6Y 8 +52X 4Y 10 +13X 2Y 12 +64XY +Y 14.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations for Weber functions

I Classically modular equations are computed for primes n > 2
I For example, for n = 13 we have Φ13(f(τ), f(13τ)) = 0 where

Φ13(X ,Y) = X 14 − X 13Y 13 + 13X 12Y 2 + 52X 10Y 4

+78X 8Y 6 +78X 6Y 8 +52X 4Y 10 +13X 2Y 12 +64XY +Y 14.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Even degree modular equations

I Classically the theory depends on the “degree” n being coprime
to 2

I Modular equations of every degree exist, they are just hard to
find

I We would like to find modular equations of even degree n

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Even degree modular equations

I Classically the theory depends on the “degree” n being coprime
to 2

I Modular equations of every degree exist, they are just hard to
find

I We would like to find modular equations of even degree n

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Even degree modular equations

I Classically the theory depends on the “degree” n being coprime
to 2

I Modular equations of every degree exist, they are just hard to
find

I We would like to find modular equations of even degree n

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

n = 2

I Naive strategy:

I compute A = f1(τ) and B = f1(2τ) for a random τ in the
upper half plane

I Find Z-linear combination of terms AiB j equal to zero

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

n = 2

I Naive strategy:
I compute A = f1(τ) and B = f1(2τ) for a random τ in the

upper half plane

I Find Z-linear combination of terms AiB j equal to zero

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

n = 2

I Naive strategy:
I compute A = f1(τ) and B = f1(2τ) for a random τ in the

upper half plane
I Find Z-linear combination of terms AiB j equal to zero

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Finding linear combinations

I The function modeta in Nemo/Arb computes the eta function
in the upper half plane

I We add Weber functions to Nemo, e.g.

f u n c t i o n f1 (x : : acb)
r e t u r n d i v e x a c t (modeta (x /2) , modeta (x))

end

I We can find small linear combinations of terms
xi ,j = f1(τ)i f1(2τ)j using LLL

I We LLL reduce the matrix
1 0 0 . . . 0 R(x0,0) I(x0,0)
0 1 0 . . . 0 R(x0,1) I(x0,1)
...

...
...

. . .
...

...
0 0 0 . . . 1 R(xm,n) I(xm,n)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Finding linear combinations

I The function modeta in Nemo/Arb computes the eta function
in the upper half plane

I We add Weber functions to Nemo, e.g.

f u n c t i o n f1 (x : : acb)
r e t u r n d i v e x a c t (modeta (x /2) , modeta (x))

end

I We can find small linear combinations of terms
xi ,j = f1(τ)i f1(2τ)j using LLL

I We LLL reduce the matrix
1 0 0 . . . 0 R(x0,0) I(x0,0)
0 1 0 . . . 0 R(x0,1) I(x0,1)
...

...
...

. . .
...

...
0 0 0 . . . 1 R(xm,n) I(xm,n)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Finding linear combinations

I The function modeta in Nemo/Arb computes the eta function
in the upper half plane

I We add Weber functions to Nemo, e.g.

f u n c t i o n f1 (x : : acb)
r e t u r n d i v e x a c t (modeta (x /2) , modeta (x))

end

I We can find small linear combinations of terms
xi ,j = f1(τ)i f1(2τ)j using LLL

I We LLL reduce the matrix
1 0 0 . . . 0 R(x0,0) I(x0,0)
0 1 0 . . . 0 R(x0,1) I(x0,1)
...

...
...

. . .
...

...
0 0 0 . . . 1 R(xm,n) I(xm,n)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Finding linear combinations

I The function modeta in Nemo/Arb computes the eta function
in the upper half plane

I We add Weber functions to Nemo, e.g.

f u n c t i o n f1 (x : : acb)
r e t u r n d i v e x a c t (modeta (x /2) , modeta (x))

end

I We can find small linear combinations of terms
xi ,j = f1(τ)i f1(2τ)j using LLL

I We LLL reduce the matrix
1 0 0 . . . 0 R(x0,0) I(x0,0)
0 1 0 . . . 0 R(x0,1) I(x0,1)
...

...
...

. . .
...

...
0 0 0 . . . 1 R(xm,n) I(xm,n)

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

LLL reduction

f u n c t i o n l i n d e p (V : : Ar ray {acb } , b i t s : : I n t)
n = l e ng t h (V)
W = [l d e xp (s , b i t s) f o r s i n V]
M = zero_matr i x (ZZ , n , n + 2)
f o r i = 1 : n

M[i , i] = ZZ(1)
M[i , n + 1] = un ique_ in t ege r (f l o o r (r e a l (W[i]) + 0 . 5))
M[i , n + 2] = un ique_ in t ege r (f l o o r (imag (W[i]) + 0 . 5))

end
L = l l l (M)
r e t u r n [L [1 , i] f o r i = 1 : n]

end

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 2

I Fails miserably: simply too many terms

I Works if we take (A8)i (B8)j instead
I

Φ2(X ,Y) = X 2Y + 16X − Y 2

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 2

I Fails miserably: simply too many terms
I Works if we take (A8)i (B8)j instead

I

Φ2(X ,Y) = X 2Y + 16X − Y 2

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 2

I Fails miserably: simply too many terms
I Works if we take (A8)i (B8)j instead
I

Φ2(X ,Y) = X 2Y + 16X − Y 2

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Computing modular equations

CC = ComplexF ie ld (128)
tau = CC(rand () , abs (rand ()))
A = modweber_f1 (tau)^8 ; B = modweber_f1 (2∗ tau)^8

v a l s = [A^ i ∗B^ j f o r i i n 0 : 2 f o r j i n 0 : 2] ;
C = l i n d e p (v a l s , 100)

R , (x , y) = Po lynomia lR ing (ZZ , ["x" , "y"])
Phi = sum ([C[3∗ i+j +1]∗x^ i ∗y^ j f o r i i n 0 : 2 f o r j i n 0 : 2])

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 4

I Same polynomial Φ2(X ,Y) relates f1(τ)8 and f1(2τ)8 as
relates f1(2τ)8 and f1(4τ)8.

I Take the resultant of yz2 + 16z − y2 and zx2 + 16x − z2 and
eliminate z :

I Φ4(X ,Y) =
Y 4 − X 4Y 3 − 32XY 3 + 240X 2Y 2 − 256X 3Y − 4096X

I Is there a relation between lower powers of f1(τ) and f1(4τ)?
I Can proceed in the same way for degree 2n, but the equations

are enormous!

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 4

I Same polynomial Φ2(X ,Y) relates f1(τ)8 and f1(2τ)8 as
relates f1(2τ)8 and f1(4τ)8.

I Take the resultant of yz2 + 16z − y2 and zx2 + 16x − z2 and
eliminate z :

I Φ4(X ,Y) =
Y 4 − X 4Y 3 − 32XY 3 + 240X 2Y 2 − 256X 3Y − 4096X

I Is there a relation between lower powers of f1(τ) and f1(4τ)?
I Can proceed in the same way for degree 2n, but the equations

are enormous!

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 4

I Same polynomial Φ2(X ,Y) relates f1(τ)8 and f1(2τ)8 as
relates f1(2τ)8 and f1(4τ)8.

I Take the resultant of yz2 + 16z − y2 and zx2 + 16x − z2 and
eliminate z :

I Φ4(X ,Y) =
Y 4 − X 4Y 3 − 32XY 3 + 240X 2Y 2 − 256X 3Y − 4096X

I Is there a relation between lower powers of f1(τ) and f1(4τ)?
I Can proceed in the same way for degree 2n, but the equations

are enormous!

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 4

I Same polynomial Φ2(X ,Y) relates f1(τ)8 and f1(2τ)8 as
relates f1(2τ)8 and f1(4τ)8.

I Take the resultant of yz2 + 16z − y2 and zx2 + 16x − z2 and
eliminate z :

I Φ4(X ,Y) =
Y 4 − X 4Y 3 − 32XY 3 + 240X 2Y 2 − 256X 3Y − 4096X

I Is there a relation between lower powers of f1(τ) and f1(4τ)?

I Can proceed in the same way for degree 2n, but the equations
are enormous!

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 4

I Same polynomial Φ2(X ,Y) relates f1(τ)8 and f1(2τ)8 as
relates f1(2τ)8 and f1(4τ)8.

I Take the resultant of yz2 + 16z − y2 and zx2 + 16x − z2 and
eliminate z :

I Φ4(X ,Y) =
Y 4 − X 4Y 3 − 32XY 3 + 240X 2Y 2 − 256X 3Y − 4096X

I Is there a relation between lower powers of f1(τ) and f1(4τ)?
I Can proceed in the same way for degree 2n, but the equations

are enormous!

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Weber modular equations

I Another method is via Weber modular equations and some
identities

I For example, for n = 3 Weber has:

f(τ)2f(3τ)2 = f2(τ)2f2(3τ)2 + f1(τ)2f1(3τ)2

I Can use the identities

f(τ)2f1(τ)2f2(τ)2 = 2

and
f2(τ)2 = 2/f1(2τ)2

to yield:
I

f1(2τ)2f1(6τ)2

f1(τ)2f1(3τ)2 =
4

f1(2τ)2f1(6τ)2 + f1(τ)2f1(3τ)2.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Weber modular equations

I Another method is via Weber modular equations and some
identities

I For example, for n = 3 Weber has:

f(τ)2f(3τ)2 = f2(τ)2f2(3τ)2 + f1(τ)2f1(3τ)2

I Can use the identities

f(τ)2f1(τ)2f2(τ)2 = 2

and
f2(τ)2 = 2/f1(2τ)2

to yield:
I

f1(2τ)2f1(6τ)2

f1(τ)2f1(3τ)2 =
4

f1(2τ)2f1(6τ)2 + f1(τ)2f1(3τ)2.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Weber modular equations

I Another method is via Weber modular equations and some
identities

I For example, for n = 3 Weber has:

f(τ)2f(3τ)2 = f2(τ)2f2(3τ)2 + f1(τ)2f1(3τ)2

I Can use the identities

f(τ)2f1(τ)2f2(τ)2 = 2

and
f2(τ)2 = 2/f1(2τ)2

to yield:

I

f1(2τ)2f1(6τ)2

f1(τ)2f1(3τ)2 =
4

f1(2τ)2f1(6τ)2 + f1(τ)2f1(3τ)2.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Weber modular equations

I Another method is via Weber modular equations and some
identities

I For example, for n = 3 Weber has:

f(τ)2f(3τ)2 = f2(τ)2f2(3τ)2 + f1(τ)2f1(3τ)2

I Can use the identities

f(τ)2f1(τ)2f2(τ)2 = 2

and
f2(τ)2 = 2/f1(2τ)2

to yield:
I

f1(2τ)2f1(6τ)2

f1(τ)2f1(3τ)2 =
4

f1(2τ)2f1(6τ)2 + f1(τ)2f1(3τ)2.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations of degree 2n

I Can use a similar method to generate modular equations for
degree 2n for all odd n

I Can even generate a modular equation of degree 4:

f1(τ)8f1(2τ)2f1(4τ)4 + 8f1(τ)4 − f1(2τ)6f1(4τ)4 = 0.

I Which can be rewritten:

f1(τ)4

f1(2τ)2 +
8

f1(2τ)4f1(4τ)4 =
f1(2τ)2

f1(τ)4 .

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations of degree 2n

I Can use a similar method to generate modular equations for
degree 2n for all odd n

I Can even generate a modular equation of degree 4:

f1(τ)8f1(2τ)2f1(4τ)4 + 8f1(τ)4 − f1(2τ)6f1(4τ)4 = 0.

I Which can be rewritten:

f1(τ)4

f1(2τ)2 +
8

f1(2τ)4f1(4τ)4 =
f1(2τ)2

f1(τ)4 .

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations of degree 2n

I Can use a similar method to generate modular equations for
degree 2n for all odd n

I Can even generate a modular equation of degree 4:

f1(τ)8f1(2τ)2f1(4τ)4 + 8f1(τ)4 − f1(2τ)6f1(4τ)4 = 0.

I Which can be rewritten:

f1(τ)4

f1(2τ)2 +
8

f1(2τ)4f1(4τ)4 =
f1(2τ)2

f1(τ)4 .

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equations of degree 2n

I Can use a similar method to generate modular equations for
degree 2n for all odd n

I Can even generate a modular equation of degree 4:

f1(τ)8f1(2τ)2f1(4τ)4 + 8f1(τ)4 − f1(2τ)6f1(4τ)4 = 0.

I Which can be rewritten:

f1(τ)4

f1(2τ)2 +
8

f1(2τ)4f1(4τ)4 =
f1(2τ)2

f1(τ)4 .

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation

I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods
I Idea: try to find modular equations between A,B2 or A,B4 or

A2,B or A4,B or A2,B2, etc.
I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation
I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods
I Idea: try to find modular equations between A,B2 or A,B4 or

A2,B or A4,B or A2,B2, etc.
I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation
I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods

I Idea: try to find modular equations between A,B2 or A,B4 or
A2,B or A4,B or A2,B2, etc.

I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation
I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods
I Idea: try to find modular equations between A,B2 or A,B4 or

A2,B or A4,B or A2,B2, etc.

I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation
I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods
I Idea: try to find modular equations between A,B2 or A,B4 or

A2,B or A4,B or A2,B2, etc.
I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Modular equation of degree 12

I Next logical case is degree 12 modular equation
I Let’s define:

B =
f1(2τ)2

f1(6τ)2 , A =
f1(τ)2

f1(12τ)2 .

I No luck with existing methods
I Idea: try to find modular equations between A,B2 or A,B4 or

A2,B or A4,B or A2,B2, etc.
I We get the modular equation

B12 + 14B6 + 8B3 + 1 = B9
(

B2

A4 + 16
A4

B2

)
.

I Now there’s enough data to guess at a general pattern.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

General pattern for degree 4n

I Define

A =
f1(τ)2

f1(4nτ)2 , B =
f1(2τ)2

f1(2nτ)2 .

I Search for linear combinations of AkB l where

(8n − 2)k + (4n − 4)l ≡ m (mod 24),

for fixed m.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

General pattern for degree 4n

I Define

A =
f1(τ)2

f1(4nτ)2 , B =
f1(2τ)2

f1(2nτ)2 .

I Search for linear combinations of AkB l where

(8n − 2)k + (4n − 4)l ≡ m (mod 24),

for fixed m.

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Degree 20 modular equation

I For degree 20, n = 5

I Look for combinations AkB l where

38k + 16l ≡ m (mod 24), for fixed m

I The smallest equation we find is

B18 + 2B15 + 255B12 − 580B9 + 255B6 − 30B3 + 1 =

256A8B11 − 256A4B7 − 16
B11

A4 +
B19

A8

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Degree 20 modular equation

I For degree 20, n = 5
I Look for combinations AkB l where

38k + 16l ≡ m (mod 24), for fixed m

I The smallest equation we find is

B18 + 2B15 + 255B12 − 580B9 + 255B6 − 30B3 + 1 =

256A8B11 − 256A4B7 − 16
B11

A4 +
B19

A8

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Degree 20 modular equation

I For degree 20, n = 5
I Look for combinations AkB l where

38k + 16l ≡ m (mod 24), for fixed m

I The smallest equation we find is

B18 + 2B15 + 255B12 − 580B9 + 255B6 − 30B3 + 1 =

256A8B11 − 256A4B7 − 16
B11

A4 +
B19

A8

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

CC = ComplexF ie ld (1000)
tau = CC(rand () , abs (rand ()))
A = modweber_f1 (tau)^2/modweber_f1 (20∗ tau)^2
B = modweber_f1 (2∗ tau)^2/modweber_f1 (10∗ tau)^2

p a i r s = [p f o r p i n
I t e r a t o r s . f i l t e r (x−>mod(38∗ x [1]+16∗ x [2] , 24) == 0 ,

(k , l) f o r k i n 0 :24 f o r l i n 0 : 2 4)]

v a l s = [A^k∗B^ l f o r (k , l) i n p a i r s] ;
C = l i n d e p (v a l s , 400)

Phi = sum(C [i]∗ x^ p a i r s [i] [1] ∗ y^ p a i r s [i] [2]
f o r i i n 1 : l e n g t h (p a i r s))

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities
I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series
I Could just scale all exponents by factor of 24
I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities

I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series
I Could just scale all exponents by factor of 24
I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities
I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series
I Could just scale all exponents by factor of 24
I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities
I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series

I Could just scale all exponents by factor of 24
I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities
I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series
I Could just scale all exponents by factor of 24

I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Checking the identities

I Check identities for many random τ

I Can check q-series identities
I Need Puiseux series

η(τ) = q1/24
∞∏

n=1

(1− qn).

I Nemo has Laurent series
I Could just scale all exponents by factor of 24
I Chose to implement simple generic Puiseux series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

The Puiseux series types

mutable s t r u c t Pu i s e u xS e r i e sR i n g {T <: RingElement } <: Ring
l a u r e n t_ r i n g : : Ring

end

mutable s t r u c t P u i s e u x S e r i e s {T <: RingElement } <: RingElem
data : : L a u r e n t S e r i e s {T}
s c a l e : : R a t i o n a l { I n t }
pa r en t : : P u i s e u xS e r i e sR i n g {T}

f u n c t i o n Pu i s e u x S e r i e s {T}(d : : L a u r e n t S e r i e s {T} ,
s c a l e : : R a t i o n a l { I n t }) where T <: RingElement

new{T}(d , s c a l e)
end

end

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface

I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent

I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type

I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy

I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone

I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit

I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers

I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators

I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient

I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Ring interface

I Must implement the AbstractAlgebra.jl Ring interface
I parent_type, elem_type, base_ring, parent
I isdomain_type, isexact_type
I hash, deepcopy
I Constructors, e.g. R(), R(123)

I zero, one, iszero, isone
I canonical_unit
I show (for printing) + helpers
I arithmetic operations, comparison operators
I powering, (exact) quotient
I in-place operators

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Verifying the q-series identities

R, q = Pu i s e u xS e r i e sR i n g (ZZ , 1000 , "q")

eta_qexp (q) = prod (1 − q^n f o r n = 1 :50)∗ q^(1//24)
f 1 (q) = d i v e x a c t (eta_qexp (q ^(1//2)) , eta_qexp (q))

A = d i v e x a c t (f 1 (q)^2 , f 1 (q^12)^2)
B = d i v e x a c t (f 1 (q^2)^2 , f 1 (q^6)^2)

A^8∗(B^18 + 2B^15 + 255B^12 − 580B^9 + 255B^6
− 30B^3 + 1 − 256A^8∗B^11 + 256A^4∗B^7)
+ 16A^4∗B^11 − B^19 == 0

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Improvements

I Scale Laurent series according to gaps between nonzero terms

I Puiseux series store only denominator of exponents
I Use Flint’s fast polynomial arithmetic for Laurent series over Z
I Faster eta function q-series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Improvements

I Scale Laurent series according to gaps between nonzero terms
I Puiseux series store only denominator of exponents

I Use Flint’s fast polynomial arithmetic for Laurent series over Z
I Faster eta function q-series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Improvements

I Scale Laurent series according to gaps between nonzero terms
I Puiseux series store only denominator of exponents
I Use Flint’s fast polynomial arithmetic for Laurent series over Z

I Faster eta function q-series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Improvements

I Scale Laurent series according to gaps between nonzero terms
I Puiseux series store only denominator of exponents
I Use Flint’s fast polynomial arithmetic for Laurent series over Z
I Faster eta function q-series

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

Thank You

http://nemocas.org/

William Hart Oscar/Nemo.jl: A Julia package for computer algebra

http://nemocas.org/

