Basic arithmetic in Flint and Nemo

William Hart, Fredrik Johansson Tommy Hofmann, Claus Fieker

October 23, 2017

William Hart [Basic arithmetic in Flint and Nemo](#page-99-0)

Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p

- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \blacktriangleright Univariate polynomials over the above rings
- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \blacktriangleright Univariate polynomials over the above rings
- \blacktriangleright Linear algebra over the above rings
- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \blacktriangleright Univariate polynomials over the above rings
- \blacktriangleright Linear algebra over the above rings
- \blacktriangleright Primality testing and integer factorisation
- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \blacktriangleright Univariate polynomials over the above rings
- \blacktriangleright Linear algebra over the above rings
- \blacktriangleright Primality testing and integer factorisation
- Polynomial factorisation over $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{F}_q$
- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \blacktriangleright Univariate polynomials over the above rings
- \blacktriangleright Linear algebra over the above rings
- \blacktriangleright Primality testing and integer factorisation
- Polynomial factorisation over $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{F}_q$
- \blacktriangleright LLL, HNF, SNF
- Basic rings: \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{F}_q , \mathbb{Q}_p
- \triangleright Univariate polynomials over the above rings
- \blacktriangleright Linear algebra over the above rings
- \blacktriangleright Primality testing and integer factorisation
- Polynomial factorisation over $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{F}_q$
- \blacktriangleright LLL, HNF, SNF
- \triangleright (Work in progress) multivariate polynomials

\blacktriangleright Quadratic sieve integer factorisation

- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \blacktriangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \triangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \blacktriangleright van Hoeij factorisation for $\mathbb{Z}[x]$
- \blacktriangleright Quadratic sieve integer factorisation
- \blacktriangleright Elliptic curve integer factorisation
- \triangleright APRCL primality test
- \blacktriangleright Parallelised FFT
- \blacktriangleright Howell form
- \triangleright Characteristic and minimal polynomial
- \blacktriangleright van Hoeij factorisation for $\mathbb{Z}[x]$
- \blacktriangleright Multivariate polynomial arithmetic $\mathbb{Z}[x, y, z, \ldots]$

Table : Quadratic sieve timings

APRCL primality test timings

William Hart [Basic arithmetic in Flint and Nemo](#page-0-0)

Table : FFT timings

Table : Charpoly and minpoly timings

for 80 \times 80 matrix over $\mathbb Z$ with entries in $[-20, 20]$ and minpoly of degree 40.

\blacktriangleright Joint work with Daniel Schultz

- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)

- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)
- \blacktriangleright "Dense": big array method

- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)
- \blacktriangleright "Dense": big array method
- \triangleright Parallel multiplication diagonal splitting (Gastineau)

- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)
- \blacktriangleright "Dense": big array method
- \triangleright Parallel multiplication diagonal splitting (Gastineau)
- \blacktriangleright Fast assembly for accumulation into 3 limbs

- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)
- \blacktriangleright "Dense": big array method
- \triangleright Parallel multiplication diagonal splitting (Gastineau)
- \blacktriangleright Fast assembly for accumulation into 3 limbs
- ▶ Pack monomials using Kronecker segmentation
- \blacktriangleright Joint work with Daniel Schultz
- \blacktriangleright Only over $\mathbb Z$ so far...
- ▶ Sparse: heap based algorithms (Monagan and Pearce)
- \blacktriangleright "Dense": big array method
- \triangleright Parallel multiplication diagonal splitting (Gastineau)
- \blacktriangleright Fast assembly for accumulation into 3 limbs
- ▶ Pack monomials using Kronecker segmentation
- \triangleright Support lex, deglex and degrevlex, exponents up to 63 bits

Table : "Dense" Fateman multiply bench

n	Trip (POLH)	Flint
4	0.13ms	0.11ms
6	0.29ms	0.45ms
8	0.91ms	1.5 _{ms}
10	3.2 _{ms}	4.4ms
12	10ms	10ms

Table : "Dense" Fateman multiply bench

Table : Sparse multiply benchmark

Table : Sparse Pearce 2 core

n	Giac	Piranha	Trip	Flint
4	0.0070s	0.0033s	0.0015s	0.0016s
6	0.044s	0.025s	0.016s	0.012s
8	0.35s	0.11s	0.088s	0.070s
10	1.5s	0.33s	0.33s	0.30s
12	4.8s	1.19s	1.52s	1.16s
14	14 _s	3.6s	7.5s	3.9s
16	35s	10 7s	21s	11.5s

Table : Sparse Pearce 4 core

n	Giac	Piranha	Trip	Flint
4	0.0062s	0.0034s	0.0015s	0.0013s
6	0.034s	0.025s	0.016s	0.011s
8	0.31s	0.078s	0.093s	0.047s
10	12s	0.23s	0.32 _s	0.19s
12	3.6s	0.71s	1.2s	0.70s
14	10 _{5s}	2.0s	5.5s	2.5s
16	25s	5.7s	10.3s	6.7s

Table : "Dense" quotient only

Table : Sparse quotient only

Table : "Dense" divisibility test with quotient

n	Sage	Singular	Magma	Giac	Flint
5	0.02s	0.006s	0.002s	0.001s	0.0005s
10	1.1s	0.56s	0.16s	0.05s	0.020s
15	28s	15s	3.3s	0.15s	0.054s
20	340s	150 _s	31s	0.90s	0.48s
25	2500s	840s	200 _s	4.1s	2.3s
30		3100s	830s	21s	11s

4 variables, returns quotient
Table : Sparse divisibility test with quotient

5 variables, returns quotient

Table : Sparse Pearce 1 core

n	Maple	Sdmp	Flint
4	0.0010s	0.0010s	0.0010s
6	0.013s	0.012s	0.012s
8	0.080s	0.074s	0.078s
10	0.35s	0.32s	0.34s
12	2.1s	1.2s	1.2s
14	14 _s	3.6s	3.7s
16	52s	96s	10 _s

4 variables

Table : Sparse Pearce 2 core

n	Maple	Sdmp	Flint
4	0.0020s	0.0017s	0.00084s
6	0.012s	0.0094s	0.0077s
8	0.065s	0.060s	0.047s
10	0.28s	0.26s	0.20 _s
12	1.60s	0.93s	0.73s
14	12 _s	2.7s	2.5s
16	52s	6.8s	6 6s

4 variables

Table : Sparse Pearce 4 core

n	Maple	Sdmp	Flint
4	0.0020s	0.0017s	0.00066s
6	0.014s	0.010s	0.0049s
8	0.058s	0.056s	0.028s
10	0.23s	0.20s	0.11s
12	1.40s	0.72s	0.45s
14	12 _s	2.2s	17s
16	48s	5.0s	4.4s

4 variables

Introducing

A computer algebra package for the Julia programming language.

<http://nemocas.org/>

▶ Support for Windows, Linux, Mac

- ▶ Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats

- ▶ Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode

- ▶ Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading

- \blacktriangleright Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- **Operator overloading**
- \blacktriangleright Fast generics and metaprogramming

- \blacktriangleright Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading
- \blacktriangleright Fast generics and metaprogramming
- \blacktriangleright Maintained and popular

- \blacktriangleright Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading
- \blacktriangleright Fast generics and metaprogramming
- \blacktriangleright Maintained and popular
- \triangleright Open source

- ▶ Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading
- \blacktriangleright Fast generics and metaprogramming
- \blacktriangleright Maintained and popular
- \triangleright Open source
- \blacktriangleright Imperative syntax

- \blacktriangleright Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading
- \blacktriangleright Fast generics and metaprogramming
- \blacktriangleright Maintained and popular
- \triangleright Open source
- \blacktriangleright Imperative syntax
- \blacktriangleright Garbage collected

- \blacktriangleright Support for Windows, Linux, Mac
- \triangleright 64 bit integers and double precision floats
- ▶ Console/REPL mode
- \triangleright Operator overloading
- \blacktriangleright Fast generics and metaprogramming
- \blacktriangleright Maintained and popular
- \triangleright Open source
- \blacktriangleright Imperative syntax
- \blacktriangleright Garbage collected
- \blacktriangleright Easy/efficient C interop

Fast generics

William Hart [Basic arithmetic in Flint and Nemo](#page-0-0)

William Hart [Basic arithmetic in Flint and Nemo](#page-0-0)

- \blacktriangleright JIT compilation : near C performance.
- Designed by mathematically minded people.
- ▶ Open Source (MIT License).
- \blacktriangleright Actively developed since 2009.
- ▶ Supports Windows, OSX, Linux, BSD.
- \blacktriangleright Friendly C/Python-like (imperative) syntax.

```
Julia is polymorphic:
```

```
gcd(a::Int, b::Int)gcd(a::Bight, b::Bight)gcd{T} <: Field } (a::Poly{T}, b::Poly{T})
```
Julia is polymorphic:

```
gcd(a::Int, b::Int)gcd(a::Bight, b::Bight)gcd{T < : Field} (a :: Poly{T}, b :: Poly{T})
```
Julia supports multimethods:

 $*(a : \text{Int } b : \text{Matrix} \{ \text{Int } \})$ ∗(a : : M a t r i x { I n t } , b : : I n t) Julia supports triangular dispatch:

*{T <: QuotientRing, S <: Poly{T}}(x::T, y::S)

Julia supports coercion in a natural way:

 $+{T < : Domain}(a::Laurent{T}, b::Series{FractionField{T}})$

Julia supports triangular dispatch:

*{T <: QuotientRing, S <: Poly{T}}(x::T, y::S)

Julia supports coercion in a natural way:

 $+{T < : Domain}(a::Laurent{T}, b::Series{FractionField{T}})$

Julia supports:

- \blacktriangleright Custom array indexing
- \triangleright Custom printing of objects
- \triangleright Custom promotion rules and conversions

Julia supports triangular dispatch:

*{T <: QuotientRing, S <: Poly{T}}(x::T, y::S)

Julia supports coercion in a natural way:

 $+{T < : Domain}(a::Laurent{T}, b::Series{FractionField{T}})$

Julia supports:

- \blacktriangleright Custom array indexing
- \triangleright Custom printing of objects
- \triangleright Custom promotion rules and conversions

Coming soon in Julia:

 \blacktriangleright Traits

Flint : univariate polys and matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, F_q, Q_p$

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions

- Flint : univariate polys and matrices over \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, F_q , Q_p
- Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

- Flint : univariate polys and matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, F_a, Q_p$
- \blacktriangleright Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

Nemo capabilities:

 \blacktriangleright Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials

- Flint : univariate polys and matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, F_a, Q_p$
- \blacktriangleright Arb : ball arithmetic, univariate polys and matrices over $\mathbb R$ and C, special and transcendental functions
- \triangleright Antic : element arithmetic over abs. number fields

Nemo capabilities:

 \blacktriangleright Generic rings: residue rings, fraction fields, dense univariate polynomials, sparse distributed multivariate polynomials , dense linear algebra, power series (absolute and relative), permutation groups

Generic polynomial resultant (Ducos)

- Generic polynomial resultant (Ducos)
- \blacktriangleright charpoly, minpoly over an integrally closed domain

- Generic polynomial resultant (Ducos)
- \triangleright charpoly, minpoly over an integrally closed domain
- ▶ Smith and Hermite normal form, Popov form

- \triangleright Generic polynomial resultant (Ducos)
- \blacktriangleright charpoly, minpoly over an integrally closed domain
- ▶ Smith and Hermite normal form, Popov form
- \blacktriangleright fast generic determinant

- \triangleright Generic polynomial resultant (Ducos)
- \triangleright charpoly, minpoly over an integrally closed domain
- ▶ Smith and Hermite normal form, Popov form
- \blacktriangleright fast generic determinant
- \blacktriangleright division/fraction free, interpolation methods for linear algebra

- \triangleright Generic polynomial resultant (Ducos)
- \triangleright charpoly, minpoly over an integrally closed domain
- ▶ Smith and Hermite normal form, Popov form
- \blacktriangleright fast generic determinant
- \blacktriangleright division/fraction free, interpolation methods for linear algebra
- \triangleright fast sparse multivariate arithmetic (Monagan and Pearce)

Access to Singular kernel functions and data types:

Goefficient rings $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/n\mathbb{Z}, GF(p)$, etc.
- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $GF(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.

- Goefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $GF(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- \triangleright Groebner basis, resolutions, syzygies

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- \triangleright Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

 \triangleright Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields

- Coefficient rings \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$, $\mathsf{GF}(p)$, etc.
- \blacktriangleright Polynomials, ideals, modules, matrices, etc.
- **F** Groebner basis, resolutions, syzygies

Integration with Nemo.jl:

- \triangleright Singular polynomials over any Nemo coefficient ring, e.g. Groebner bases over cyclotomic fields
- \blacktriangleright Nemo generics over any Singular ring

Demo...

Iterated univariate arithmetic measures generic performance

Iterated univariate arithmetic measures generic performance (all systems have optimised univariate arithmetic for $\mathbb{Z}[x]$)

Iterated univariate arithmetic measures generic performance (all systems have optimised univariate arithmetic for $\mathbb{Z}[x]$)

$$
\begin{array}{ll} \star & f = (t + (z + (y + (x + 1)))) \\ \star & p = f^{30} \end{array}
$$

$$
\blacktriangleright \text{ time } q = p * (p + 1)
$$

Table : Dense Recursive Fateman $Z[x][y][z][t]$

Sage	Pari/GP Magma		Nemo
132s	- 156s	233s	44s.

$$
f = (5u5 + (3t3t + (2z2 + (y + (x + 1))))16
$$

\n
$$
g = (u + (t + (2z2 + (3y3 + (5x5 + 1))))16
$$

\n
$$
time q = f * g
$$

Table : Pearce $Z[x][y][z][t][u]$

Sage	Pari/GP	Magma	Nemo
2900s	798s	647s	167s

$$
\begin{aligned} R\langle x \rangle &= GF(17^{11}) \\ &\blacktriangleright S = R[y] \end{aligned}
$$

\n- $$
R\langle x \rangle = GF(17^{11})
$$
\n- $S = R[y]$
\n- $T = S/(y^3 + 3xy + 1)$
\n- $U = T[z]$
\n

►
$$
R\langle x \rangle = GF(17^{11})
$$

\n> > $S = R[y]$
\n> > $T = S/(y^3 + 3xy + 1)$
\n> > $U = T[z]$
\n> > $f = T(3y^2 + y + x)z^2 + T((x + 2)y^2 + x + 1)z + T(4xy + 3)$
\n> > $g = T(7y^2 - y + 2x + 7)z^2 + T(3y^2 + 4x + 1)z + T((2x + 1)y + 1)$
\n> > $s = f^{12}$
\n> > $t = (s + g)^{12}$

►
$$
R\langle x \rangle = GF(17^{11})
$$

\n> > $S = R[y]$
\n> > $T = S/(y^3 + 3xy + 1)$
\n> > $U = T[z]$
\n> > $f = T(3y^2 + y + x)z^2 + T((x + 2)y^2 + x + 1)z + T(4xy + 3)$
\n> > $g = T(7y^2 - y + 2x + 7)z^2 + T(3y^2 + 4x + 1)z + T((2x + 1)y + 1)$
\n> > $s = f^{12}$
\n> > $t = (s + g)^{12}$

$$
\blacktriangleright \text{ time } r = \text{resultant}(s, t)
$$

Table : Resultant

Sage	Pari/GP Magma Nemo	
179907s N/A	82s.	0.2s

Benchmark for generic power series

$$
\blacktriangleright R = \mathbb{Q}[x]
$$

- \blacktriangleright $S = R[[t]]$
- $u = t + O(t^{1000})$
- \triangleright time $r = (u \exp(xu))/(e^{u}-1)$

Table : Bernoulli polynomials

Sage	Pari/GP Magma Nemo		
161s	235s	4223s	65s

Generic polynomials over Antic number field elements

►
$$
R\langle x \rangle
$$
 = CyclotomicField(20)
\n► $S = R[y]$
\n► $f = (3x^7 + x^4 - 3x + 1)y^3 + (2x^6 - x^5 + 4x^4 - x^3 + x^2 - 1)y + (-3x^7 + 2x^6 - x^5 + 3x^3 - 2x^2 + x)$
\n► time $r = f^{300}$

Table : Polynomials over a number field

Sage Pari/GP Magma Nemo		
$6.92s$ 0.21s	0.70s	0.13s

- \blacksquare n = 2003 × 1009
- $R = (\mathbb{Z}/n\mathbb{Z})[x]$
- \blacktriangleright $M=(a_{i,j})\in\mathsf{Mat}_{80\times 80}(R),$ $\deg(a_{i,j})\leq 5,$ $||a_{i,j}||_{\infty}\leq 100$
- ime determinant(M)

Table : Determinant over commutative ring

	Sage Pari/GP Magma		Nemo
$43.5s$ $456s$		est > 4×10^{19} s 7.5s	

- \blacktriangleright $K\langle a \rangle$ $=$ NumberField $(x^3 + 3x + 1)$
- \blacktriangleright $M=(a_{i,j})\in\mathsf{Mat}_{80\times 80}({K}),$ $\deg(a_{i,j})=2,$ $||a_{i,j}||_{\infty}\leq 100$
- ime determinant(M)

There is coefficient blowup in this example.

- $R = \mathbb{Z}[x]$
- \blacktriangleright $M=(a_{i,j})\in \mathsf{Mat}_{40\times 40}(R),$ $\deg(a_{i,j})=2,$ $||a_{i,j}||_{\infty}\leq 20$
- ime determinant(M)

There is coefficient blowup in this example.

Table : Determinant over a polynomial ring

	Sage Pari/GP Magma Nemo		
$63s$ 13s		3.2s	0.24s

\n- $$
R = \mathbb{Z}[x][y]
$$
\n- $M = (a_{i,j}) \in \text{Mat}_{20 \times 20}(R), \deg(a_{i,j}) = 2, 2, ||a_{i,j}||_{\infty} \leq 20$
\n- $b = (a_1, a_2, \ldots, a_{20})^T$, entries as for M
\n- time solve $Mx = b$
\n

There is coefficient blowup in this example.

Table : Linear solve over (fraction field of) polynomial ring

Sage	Pari/GP Magma		Nemo
	$> 10^5$ s $> 10^6$ s	90s.	\sqrt{s}

- $R = \mathbb{Z}[x]$
- $M = (a_{i,j}) \in Mat_{20\times 20}(R)$, block diagonal with two 10×10 blocks, deg $(a_{i,j})=2, \ ||a_{i,j}||_{\infty} \leq 20$
- \blacktriangleright apply ten "small" random similarity transforms
- ime minpoly (M)

Table : Minimal polynomial over integrally closed gcd domain

Sage	Pari/GP	Magma Nemo	
Exception	$> 6 \times 10^6$ s N/A		0.6s

Develop a visionary, next generation, open source computer algebra system, integrating all systems, libraries and packages developed within the TRR.

GAP: computational discrete algebra, group and representation theory, general purpose high level interpreted programming language. Singular: polynomial computations, with emphasis on algebraic geometry, commutative algebra, and singularity theory.

giluj

Examples:

julia

- Multigraded equivariant COX ring of a toric variety over a number field
- Graphs of groups in division algebras
- Matrix groups over polynomial rings over number field

Oscar

polymake: convex polytopes, polyhedral and stacky fans, simplicial complexes and related objects from combinatorics and geometry.

julia

ANTIC: number theoretic software featuring computations in and with number fields and generic finitely presented rings.

William Hart [Basic arithmetic in Flint and Nemo](#page-0-0)

 \blacktriangleright Flint - polynomials and linear algebra

- \blacktriangleright Flint polynomials and linear algebra
- \blacktriangleright Antic number field arith.

- \blacktriangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- \triangleright MPIR (fork of GMP) bignum arithmetic

- \blacktriangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- ▶ MPIR (fork of GMP) bignum arithmetic

Julia libraries:

 \triangleright Nemo.jl - generic, finitely presented rings

- \blacktriangleright Flint polynomials and linear algebra
- \triangleright Antic number field arith.
- ▶ MPIR (fork of GMP) bignum arithmetic

Julia libraries:

- \triangleright Nemo.jl generic, finitely presented rings
- \blacktriangleright Hecke il number fields, class field theory, algebraic number theory

<http://nemocas.org/>