
OSCAR: The Work

Reimer Behrends, Thomas Breuer,
Sebastian Gutsche, William Hart

Tübingen, September 25, 2018

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche

I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends
I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche

I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends
I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche

I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends
I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer

I Garbage collection - Reimer Behrends
I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends

I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends
I Documentation - Bill Hart

I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Update on progress

I Resources for you - Sebastian Gutsche
I Polymake/Julia integration - Sebastian Gutsche
I Gap/Julia integration - Sebastian Gutsche
I Julia in Gap and the future - Thomas Breuer
I Garbage collection - Reimer Behrends
I Documentation - Bill Hart
I Maps in OSCAR - Bill Hart

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Introducing the OSCAR developers

I Reimer Behrends - TU Kaiserslautern
I Parallelisation
I Low-level infrastructure

I Thomas Breuer - RWTH Aachen
I Julia in Gap
I Representation theory

I Sebastian Gutsche - University of Siegen
I GAP/Julia integration
I Polymake/Julia integration

I Bill Hart - TU Kaiserslautern
I Flint - polynomials and linear algebra over concrete rings
I Nemo.jl - Finitely presented rings in Julia
I Singular.jl - Julia/Singular integration

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Introducing the OSCAR developers

I Reimer Behrends - TU Kaiserslautern
I Parallelisation
I Low-level infrastructure

I Thomas Breuer - RWTH Aachen
I Julia in Gap
I Representation theory

I Sebastian Gutsche - University of Siegen
I GAP/Julia integration
I Polymake/Julia integration

I Bill Hart - TU Kaiserslautern
I Flint - polynomials and linear algebra over concrete rings
I Nemo.jl - Finitely presented rings in Julia
I Singular.jl - Julia/Singular integration

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Introducing the OSCAR developers

I Reimer Behrends - TU Kaiserslautern
I Parallelisation
I Low-level infrastructure

I Thomas Breuer - RWTH Aachen
I Julia in Gap
I Representation theory

I Sebastian Gutsche - University of Siegen
I GAP/Julia integration
I Polymake/Julia integration

I Bill Hart - TU Kaiserslautern
I Flint - polynomials and linear algebra over concrete rings
I Nemo.jl - Finitely presented rings in Julia
I Singular.jl - Julia/Singular integration

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Introducing the OSCAR developers

I Reimer Behrends - TU Kaiserslautern
I Parallelisation
I Low-level infrastructure

I Thomas Breuer - RWTH Aachen
I Julia in Gap
I Representation theory

I Sebastian Gutsche - University of Siegen
I GAP/Julia integration
I Polymake/Julia integration

I Bill Hart - TU Kaiserslautern
I Flint - polynomials and linear algebra over concrete rings
I Nemo.jl - Finitely presented rings in Julia
I Singular.jl - Julia/Singular integration

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Website

All information about the OSCAR project can be found on

https://oscar.computeralgebra.de

On the page you find

I news,
I blog posts,
I interactive examples,
I installation instructions,
I and a list of all people involved.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

h

Website

All information about the OSCAR project can be found on

https://oscar.computeralgebra.de

On the page you find

I news,
I blog posts,
I interactive examples,
I installation instructions,
I and a list of all people involved.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

h

Resources

OSCAR is an open source and open development project.

All code can be found on

https://github.com/oscar-system

You can contribute to discussions and
implementation!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

h

Resources

OSCAR is an open source and open development project.

All code can be found on

https://github.com/oscar-system

You can contribute to discussions and
implementation!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

h

Resources

OSCAR is an open source and open development project.

All code can be found on

https://github.com/oscar-system

You can contribute to discussions and
implementation!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

h

Some notes about polymake

I Polymake is a Perl/C++ hybrid system
I Big objects (polytopes, cones, etc.) are stored in Perl data

types, small objects in C++ data types
I To interface polymake, one needs to handle small and big

object in Julia, and provide access to all polymake functions
(clients)

I This is possible using the polymake callable library, and a lot of
information from polymake itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Some notes about polymake

I Polymake is a Perl/C++ hybrid system

I Big objects (polytopes, cones, etc.) are stored in Perl data
types, small objects in C++ data types

I To interface polymake, one needs to handle small and big
object in Julia, and provide access to all polymake functions
(clients)

I This is possible using the polymake callable library, and a lot of
information from polymake itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Some notes about polymake

I Polymake is a Perl/C++ hybrid system
I Big objects (polytopes, cones, etc.) are stored in Perl data

types, small objects in C++ data types

I To interface polymake, one needs to handle small and big
object in Julia, and provide access to all polymake functions
(clients)

I This is possible using the polymake callable library, and a lot of
information from polymake itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Some notes about polymake

I Polymake is a Perl/C++ hybrid system
I Big objects (polytopes, cones, etc.) are stored in Perl data

types, small objects in C++ data types
I To interface polymake, one needs to handle small and big

object in Julia, and provide access to all polymake functions
(clients)

I This is possible using the polymake callable library, and a lot of
information from polymake itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Some notes about polymake

I Polymake is a Perl/C++ hybrid system
I Big objects (polytopes, cones, etc.) are stored in Perl data

types, small objects in C++ data types
I To interface polymake, one needs to handle small and big

object in Julia, and provide access to all polymake functions
(clients)

I This is possible using the polymake callable library, and a lot of
information from polymake itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl
I Cxx.jl allows inlining C++ code in Julia
I Creation of many objects is possible, as calling some functions
I But Cxx.jl lacks support for many C++(11/14) features

polymake relies on
I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl

I Cxx.jl allows inlining C++ code in Julia
I Creation of many objects is possible, as calling some functions
I But Cxx.jl lacks support for many C++(11/14) features

polymake relies on
I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl
I Cxx.jl allows inlining C++ code in Julia

I Creation of many objects is possible, as calling some functions
I But Cxx.jl lacks support for many C++(11/14) features

polymake relies on
I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl
I Cxx.jl allows inlining C++ code in Julia
I Creation of many objects is possible, as calling some functions

I But Cxx.jl lacks support for many C++(11/14) features
polymake relies on

I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl
I Cxx.jl allows inlining C++ code in Julia
I Creation of many objects is possible, as calling some functions
I But Cxx.jl lacks support for many C++(11/14) features

polymake relies on

I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

First try: Polymake.jl with Lorenz

I Integrate polymake and Julia using Cxx.jl
I Cxx.jl allows inlining C++ code in Julia
I Creation of many objects is possible, as calling some functions
I But Cxx.jl lacks support for many C++(11/14) features

polymake relies on
I So this try failed!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl
I CxxWrap.jl lets you create static wrapper for C++ data

types and functions, written in pure C++
I CxxWrap.jl supports enough C++ features
I Currently, many small objects and almost all polymake

functions are interfaced
I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl

I CxxWrap.jl lets you create static wrapper for C++ data
types and functions, written in pure C++

I CxxWrap.jl supports enough C++ features
I Currently, many small objects and almost all polymake

functions are interfaced
I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl
I CxxWrap.jl lets you create static wrapper for C++ data

types and functions, written in pure C++

I CxxWrap.jl supports enough C++ features
I Currently, many small objects and almost all polymake

functions are interfaced
I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl
I CxxWrap.jl lets you create static wrapper for C++ data

types and functions, written in pure C++
I CxxWrap.jl supports enough C++ features

I Currently, many small objects and almost all polymake
functions are interfaced

I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl
I CxxWrap.jl lets you create static wrapper for C++ data

types and functions, written in pure C++
I CxxWrap.jl supports enough C++ features
I Currently, many small objects and almost all polymake

functions are interfaced

I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Second try: PolymakeWrap.jl with Kaluba, Lorenz, Timme

I Integrate polymake and Julia using CxxWrap.jl
I CxxWrap.jl lets you create static wrapper for C++ data

types and functions, written in pure C++
I CxxWrap.jl supports enough C++ features
I Currently, many small objects and almost all polymake

functions are interfaced
I Next structural iteration coming soon (this year)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects

I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects

I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients

I Current issue: Interfaces to the remaining small objects and
remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects

and
remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Polymake: Example

julia> P = PolymakeWrap.rand_sphere(6,20)
pm::Polytope<Rational>

julia> PolymakeWrap.give(P, "F_VECTOR")
pm::Vector<pm::Integer>
20 164 623 1149 1005 335

I Conversion from and to certain small objects
I Creation of big objects
I Possibility to call many polymake clients
I Current issue: Interfaces to the remaining small objects and

remaining clients

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Integration of polymake and Julia

Next iteration for the polymake Julia interface

1. Export data from polymake about its clients (in a JSON
format)

2. We use Julia to translate the JSON data into C++ wrapper
code

3. Using CxxWrap.jl, we can compile this wrapper and load all
polymake functionality into Julia

4. . . .

5. SUCCESS!

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP

I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

GAP: JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

I Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

I Use of GAP data types in Julia and Julia data types in GAP
I Use of Julia functions in GAP and GAP functions in Julia

https://github.com/oscar-system/GAPJulia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

https://github.com/oscar-system/GAPJulia

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers

I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats

I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings

I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans

I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that hold pointers to
Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia(a);
<Julia: 2>

gap> ConvertedFromJulia(b);
2

Possible conversions:

I (small) Integers
I Floats
I Strings
I Booleans
I Nested lists of the above to Arrays or Tuples

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions
I Input data can be converted to Julia, or passed as GAP object

pointers to Julia
I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions
I Input data can be converted to Julia, or passed as GAP object

pointers to Julia
I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions
I Input data can be converted to Julia, or passed as GAP object

pointers to Julia
I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions

I Input data can be converted to Julia, or passed as GAP object
pointers to Julia

I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions
I Input data can be converted to Julia, or passed as GAP object

pointers to Julia

I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP("Base");

gap> Julia.Base.sqrt(4);
<Julia: 2.0>

I Julia functions can be used like GAP functions
I Input data can be converted to Julia, or passed as GAP object

pointers to Julia
I Method dispatch is handled by Julia itself

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup(LibGAP.to_gap(3))
GAP: SymmetricGroup([1 .. 3])

julia> size_gap = GAP.Size(S3)
GAP: 6

julia> LibGAP.from_gap(size_gap, Int64)
6

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup(LibGAP.to_gap(3))
GAP: SymmetricGroup([1 .. 3])

julia> size_gap = GAP.Size(S3)
GAP: 6

julia> LibGAP.from_gap(size_gap, Int64)
6

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup(LibGAP.to_gap(3))
GAP: SymmetricGroup([1 .. 3])

julia> size_gap = GAP.Size(S3)
GAP: 6

julia> LibGAP.from_gap(size_gap, Int64)
6

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup(LibGAP.to_gap(3))
GAP: SymmetricGroup([1 .. 3])

julia> size_gap = GAP.Size(S3)
GAP: 6

julia> LibGAP.from_gap(size_gap, Int64)
6

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Previously: Calling Julia functions from GAP had a massive
overhead.

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function

gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function

gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)

gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

GAP: How far we got: function calls

Now: Calling Julia functions from GAP works with no overhead:

Calling a pure GAP function
gap> ListX([1..10^5], [1..10], {i,j} -> i);; time;
207

Calling a (variadic) C function
gap> ListX([1..10^5], [1..10], ReturnFirst);; time;
207

Calling a Julia function (compiled via @cfunction)
gap> ListX([1..10^5], [1..10], ReturnFirstJL);; time;
195

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Ongoing work: GAP–Julia integration

I use Singular from GAP, via Singular.jl
I use Antic from GAP, via Nemo.jl
I develop examples how to use GAP–Julia integration

in research.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

An example: Use Julia for speedup.

q, n ∈ N, q > 1

e dividing qn − 1

z = (qn − 1)/e

field F

A = A(q, n, e) =
⊕z

i=0 Fbi

with multiplication

bibj =

{
bi+j ; no carry in q-adic addition ie + je

0 ; otherwise

J(A) Jacobson radical

(dim(J(A)i−1/J(A)i))i≥0 Loewy structure of A

LL(A) = min{i ; J(A)i = {0}} Loewy length

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Implement A(q, n, e)

in GAP: algebra via structure constants table

deal with the algebra, its elements, substructures

gap> a:= SingerAlgebra(5, 2, 4);
A(5,2,4)
gap> DimensionsLoewyFactors(a);
[1, 5, 1]
gap> LoewyLength(a);
3
gap> a:= SingerAlgebra(5, 2, 6);
A(5,2,6)
gap> DimensionsLoewyFactors(a);
[1, 1, 1, 1, 1]
gap> LoewyLength(a);
5

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Implement A(q, n, e)

gap> a:= SingerAlgebra(6, 11, 115);
A(6,11,115)
gap> LoewyLength(a);
12

gap> Dimension(a);
3154758

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Implement A(q, n, e)

gap> a:= SingerAlgebra(6, 11, 115);
A(6,11,115)
gap> LoewyLength(a);
12

gap> Dimension(a);
3154758

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Combinatorial setup for A = A(q, n, e)

I for computing LL(A), we do not need to deal with elements of
A

I interpret LL(A)− 1 as length of a longest nonzero product of
bi

I distribute the bi to Loewy layers
I in GAP: possible but slow
I try to combine GAP and Julia

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

The Julia part

function LoewyLayersData(q::Int, n::Int, e)
ord = div(q^n - 1, e) # deal with integer overflow!
monomials = [zeros(Int, n)]
layers = [1]
for i in 1:ord

mon = coeffs(i, q, n) # a small julia function
lambda = 1
for j in 2:i

if lambda < layers[j]
&& islessorequal(monomials[j], mon, n)

lambda = layers[j]
end

end
push!(monomials, mon)
push!(layers, lambda + 1)

end
return Dict("monomials" => monomials, "layers" => layers)
end;

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

The GAP part

DeclareAttribute("LoewyStructureInfo", IsSingerAlgebra);

InstallMethod(LoewyStructureInfo,
["IsSingerAlgebra"],
A -> ConvertedFromJuliaRecordFromDictionary(

CallFuncList(Julia.LoewyStructure.LoewyLayersData,
ParametersOfSingerAlgebra(A))));

DeclareAttribute("DimensionsLoewyFactors", IsSingerAlgebra);

InstallMethod(DimensionsLoewyFactors,
["IsSingerAlgebra"],
A -> StructuralConvertedFromJulia(

Julia.LoewyStructure.LoewyVector(
LoewyStructureInfo(A))));

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Results

I speedup by a factor of 10 (Julia vs. GAP)
I extensible: let Julia compute more data (later)
I more elaborate version:

I about 700 lines of Julia code
I about 350 lines of GAP code

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Lessons learned

I reasonable Julia code can look very similar
to reasonable GAP code

I be aware of, e. g., integer overflow in Julia
I avoid local Julia functions
I . . .

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Julia GC in GAP — the short version

I cd gap
I ./configure --with-gc=julia

--with-julia=/path/to/julia/usr
I make
I ./gap

+-------+ GAP 4.8.8-6005-g64b84d0 of today
| GAP | https://www.gap-system.org
+-------+ Architecture: x86_64-pc-linux-gnu-default64
Configuration: gmp 6.1.2, Julia 1.1.0-DEV, readline
Loading the library and packages ...

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Garbage collection basics

I Identify all reachable objects.
I Reachable
I = referenced by a local or global variable (roots) or
I = referenced by another reachable object

(repeat recursively).
I Discard all unreachable objects.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Problem 1: GAP vs. Julia object layouts

I Julia: Records or arrays of scalars/records.
I GAP: Typically, list of tagged pointers.
I ⇒ Cannot describe GAP object layout in a way that the Julia

GC understands.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Problem 2: Global roots

I Julia: All global roots must be variables in a Julia module.
I GAP: Roots can be arbitrary C variables that can be updated

from C code.
I ⇒ No possibility to tell the Julia GC about them.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Problem 3: Local roots & stack scanning

I Julia: Julia knows the layout of the Julia stack and tracks
variables there.

I GAP: We do not always know the layout of C stack
frames/registers and even if we did, we could not easily tell
Julia about that.

I GAP uses a conservative approach to stack scanning.
I ⇒ Difficult to even determine which objects are referenced by

local variables.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Making the Julia GC work for GAP

New Julia GC extensions for foreign code (not just GAP):

1. Support custom mark functions for foreign types.
2. Allow foreign code to supply additional roots.
3. Support conservative scanning to identify local variables.

Result: Pull request #28368 for Julia on GitHub (approved, though
not yet merged).

The next GAP release (4.10, November 2018) will already support
Julia integration.

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Documentation

{Demo documentation}

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

What infrastructure is needed for a CAS?

function gcd(a, b)
do something

end

d = gcd(a, b)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Distinguishing functions (dispatch)

f = x^2 + 2x + 3
g = x^3 + 3x + 1

d = f.gcd(g)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Multimethods

function gcd(f::Poly, g::Poly)
do something

end

d = gcd(f, g)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Parameterised types

function gcd(f::Poly{T}, g::Poly{T})
where T <: FieldElement

do something
end

d = gcd(f, g)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Too much parameterisation!

function gcd(f::Poly{Zmod{T}}, g::Poly{Zmod{T}})
where T

do something
end

d = gcd(f, g)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Maps

function myfun(f::Map, n::Integer)
do something

end

d = myfun(f, 12)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.

I Cached maps
I Composite maps
I Identity maps
I Maps with retractions/sections
I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.
I Cached maps

I Composite maps
I Identity maps
I Maps with retractions/sections
I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.
I Cached maps
I Composite maps

I Identity maps
I Maps with retractions/sections
I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.
I Cached maps
I Composite maps
I Identity maps

I Maps with retractions/sections
I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.
I Cached maps
I Composite maps
I Identity maps
I Maps with retractions/sections

I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Different kinds of maps

I Maps between groups/rings/modules/etc.
I Cached maps
I Composite maps
I Identity maps
I Maps with retractions/sections
I Maps as morphisms in a category

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Maps between domains

function myfun(f::Map{C, D}, n::Integer)
where C <: Group, D <: Group

do something
end

d = myfun(f, 12)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Inheritance and traits

May want maps to have certain features:

function myfun(f::Map{C, D, T}, n::Integer)
where C <: Group, D <: Group,

T <: IsCacheable
do something

end

d = myfun(f, 12)

Problem : no multiple inheritance, need parameter for each new
“trait”

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Inheritance and traits

May want maps to have certain features:

function myfun(f::Map{C, D, T}, n::Integer)
where C <: Group, D <: Group,

T <: IsCacheable
do something

end

d = myfun(f, 12)

Problem : no multiple inheritance, need parameter for each new
“trait”

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Additional problems

I May also want traits to inherit

I What about classes of map (CompositeMap, CachedMap, etc.)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Additional problems

I May also want traits to inherit
I What about classes of map (CompositeMap, CachedMap, etc.)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Four parameter types

function myfun(f::Map{C, D, T, U}, n::Integer)
where C <: Group, D <: Group,

T <: MapClass, U <: MapType
do something

end

d = myfun(f, 12)

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

Usability improvements

function myfun(f::Map)

function myfun(f::Map(C, D))

function myfun(f::Map(CompositeMap))

function myfun(f::Map(MyMap))

function myfun(f::Map(C, D, MyMap))

Behrends, Breuer, Gutsche, Hart OSCAR: The Work

	Reconciling GAP's and Julia's garbage collectors

